/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { static void update_op(const instruction_ref& input, const instruction_ref& ins, module& m) { auto op = ins->get_operator(); auto val = op.to_value(); auto op_padding = val.at("padding").to_vector(); auto kdims = input->get_shape().lens().size() - 2; if(std::equal(op_padding.begin(), op_padding.begin() + kdims, op_padding.begin() + kdims, op_padding.end())) return; std::vector padding(input->get_shape().lens().size() * 2, 0); std::vector pads_l(op_padding.begin(), op_padding.begin() + kdims); std::vector pads_r(op_padding.begin() + kdims, op_padding.end()); op_padding = std::vector(kdims * 2, 0); op.from_value({{"padding", op_padding}}); std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2); std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2); auto pad_op = m.insert_instruction(ins, op::pad{padding}, input); auto new_inputs = ins->inputs(); new_inputs.front() = pad_op; m.replace_instruction(ins, op, new_inputs); } static void update_pooling(const instruction_ref& input, const instruction_ref& ins, module& m) { auto op = any_cast(ins->get_operator()); if(op.mode == op::pooling_mode::average) { return; } auto kdims = input->get_shape().lens().size() - 2; if(std::equal(op.padding.begin(), op.padding.begin() + kdims, op.padding.begin() + kdims, op.padding.end())) return; std::vector padding(input->get_shape().lens().size() * 2, 0); std::vector pads_l(op.padding.begin(), op.padding.begin() + kdims); std::vector pads_r(op.padding.begin() + kdims, op.padding.end()); op.padding = std::vector(kdims * 2, 0); std::copy(pads_l.begin(), pads_l.end(), padding.begin() + 2); std::copy(pads_r.begin(), pads_r.end(), padding.begin() + kdims + 2 + 2); // maxpool uses lowest value for padding float pad_val = std::numeric_limits::lowest(); auto pad_op = m.insert_instruction(ins, op::pad{padding, pad_val}, input); auto new_inputs = ins->inputs(); new_inputs.front() = pad_op; m.replace_instruction(ins, op, new_inputs); } void insert_pad::apply(module& m) const { for(auto ins : iterator_for(m)) { const std::string& op_name = ins->name(); if(op_name != "convolution" and op_name != "im2col" and op_name != "pooling") continue; auto input = ins->inputs().front(); if(op_name == "convolution" or op_name == "im2col") update_op(input, ins, m); else if(op_name == "pooling") update_pooling(input, ins, m); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx