#include #include #include #include #include #include #include #include "test.hpp" void pytorch_conv_bias_test() { migraph::program p; auto l0 = p.add_parameter("0", {migraph::shape::float_type, {1, 3, 32, 32}}); auto l1 = p.add_parameter("1", {migraph::shape::float_type, {1, 3, 5, 5}}); auto l2 = p.add_parameter("2", {migraph::shape::float_type, {1}}); uint64_t axis = 1; auto l3 = p.add_instruction(migraph::op::convolution{}, l0, l1); auto l4 = p.add_instruction(migraph::op::broadcast{axis, l3->get_shape()}, l2); p.add_instruction(migraph::op::add{}, l3, l4); auto prog = migraph::parse_onnx("conv.onnx"); EXPECT(p == prog); } void pytorch_conv_relu_maxpool() { migraph::program p; auto l0 = p.add_parameter("0", {migraph::shape::float_type, {1, 3, 32, 32}}); auto l1 = p.add_parameter("1", {migraph::shape::float_type, {1, 3, 5, 5}}); auto l2 = p.add_parameter("2", {migraph::shape::float_type, {1}}); uint64_t axis = 1; auto l3 = p.add_instruction(migraph::op::convolution{}, l0, l1); auto l4 = p.add_instruction(migraph::op::broadcast{axis, l3->get_shape()}, l2); auto l5 = p.add_instruction(migraph::op::add{}, l3, l4); auto l6 = p.add_instruction(migraph::op::activation{"relu"}, l5); p.add_instruction(migraph::op::pooling{"max", {{0, 0}}, {{2, 2}}, {{2, 2}}}, l6); auto prog = migraph::parse_onnx("conv_relu_maxpool.onnx"); EXPECT(p == prog); } void pytorch_conv_bn_relu_maxpool() { migraph::program p; auto l0 = p.add_parameter("0", {migraph::shape::float_type, {1, 3, 32, 32}}); auto l1 = p.add_parameter("1", {migraph::shape::float_type, {1, 3, 5, 5}}); auto l2 = p.add_parameter("2", {migraph::shape::float_type, {1}}); auto p3 = p.add_parameter("3", {migraph::shape::float_type, {1}}); auto p4 = p.add_parameter("4", {migraph::shape::float_type, {1}}); auto p5 = p.add_parameter("5", {migraph::shape::float_type, {1}}); auto p6 = p.add_parameter("6", {migraph::shape::float_type, {1}}); uint64_t axis = 1; auto l3 = p.add_instruction(migraph::op::convolution{}, l0, l1); auto l4 = p.add_instruction(migraph::op::broadcast{axis, l3->get_shape()}, l2); auto l5 = p.add_instruction(migraph::op::add{}, l3, l4); auto l6 = p.add_instruction(migraph::op::batch_norm_inference{1.0e-5f}, l5, p3, p4, p5, p6); auto l7 = p.add_instruction(migraph::op::activation{"relu"}, l6); p.add_instruction(migraph::op::pooling{"max", {{0, 0}}, {{2, 2}}, {{2, 2}}}, l7); auto prog = migraph::parse_onnx("conv_bn_relu_maxpool.onnx"); EXPECT(p == prog); } void pytorch_conv_relu_maxpool_x2() { migraph::program p; auto l0 = p.add_parameter("0", {migraph::shape::float_type, {1, 3, 32, 32}}); auto l1 = p.add_parameter("1", {migraph::shape::float_type, {5, 3, 5, 5}}); auto l2 = p.add_parameter("2", {migraph::shape::float_type, {5}}); uint64_t axis = 1; auto l3 = p.add_instruction(migraph::op::convolution{}, l0, l1); auto l4 = p.add_instruction(migraph::op::broadcast{axis, l3->get_shape()}, l2); auto l5 = p.add_instruction(migraph::op::add{}, l3, l4); auto l6 = p.add_instruction(migraph::op::activation{"relu"}, l5); auto l7 = p.add_instruction(migraph::op::pooling{"max", {{0, 0}}, {{2, 2}}, {{2, 2}}}, l6); auto l8 = p.add_parameter("3", {migraph::shape::float_type, {1, 5, 5, 5}}); auto l9 = p.add_parameter("4", {migraph::shape::float_type, {1}}); auto l10 = p.add_instruction(migraph::op::convolution{}, l7, l8); auto l11 = p.add_instruction(migraph::op::broadcast{axis, l10->get_shape()}, l9); auto l12 = p.add_instruction(migraph::op::add{}, l10, l11); auto l13 = p.add_instruction(migraph::op::activation{"relu"}, l12); p.add_instruction(migraph::op::pooling{"max", {{0, 0}}, {{2, 2}}, {{2, 2}}}, l13); auto prog = migraph::parse_onnx("conv_relu_maxpoolX2.onnx"); EXPECT(p == prog); } void leaky_relu_test() { migraph::program p; float alpha = 0.01f; auto l0 = p.add_parameter("0", {migraph::shape::float_type, {3}}); p.add_instruction(migraph::op::leaky_relu{alpha}, l0); auto prog = migraph::parse_onnx("leaky_relu.onnx"); EXPECT(p == prog); } void imagescaler_test() { migraph::program p; migraph::shape s{migraph::shape::float_type, {1, 3, 16, 16}}; auto l0 = p.add_parameter("0", s); auto scale_val = p.add_literal(0.5f); auto bias_vals = p.add_literal( migraph::literal{migraph::shape{migraph::shape::float_type, {3}}, {0.01, 0.02, 0.03}}); auto scaled_tensor = p.add_instruction(migraph::op::scalar{s}, scale_val); auto img_scaled = p.add_instruction(migraph::op::mul{}, l0, scaled_tensor); auto bias_bcast = p.add_instruction(migraph::op::broadcast{1, s}, bias_vals); p.add_instruction(migraph::op::add{}, img_scaled, bias_bcast); auto prog = migraph::parse_onnx("imagescaler_test.onnx"); EXPECT(p == prog); } void globalavgpool_test() { migraph::program p; auto input = p.add_parameter("0", migraph::shape{migraph::shape::float_type, {1, 3, 16, 16}}); auto op = migraph::op::pooling{"average"}; auto lens = input->get_shape().lens(); op.lengths = {lens[2], lens[3]}; p.add_instruction(op, input); auto prog = migraph::parse_onnx("globalavgpool_test.onnx"); EXPECT(p == prog); } void globalmaxpool_test() { migraph::program p; auto input = p.add_parameter("0", migraph::shape{migraph::shape::float_type, {1, 3, 16, 16}}); auto op = migraph::op::pooling{"max"}; auto lens = input->get_shape().lens(); op.lengths = {lens[2], lens[3]}; p.add_instruction(op, input); auto prog = migraph::parse_onnx("globalmaxpool_test.onnx"); EXPECT(p == prog); } int main() { pytorch_conv_bias_test(); pytorch_conv_relu_maxpool(); pytorch_conv_bn_relu_maxpool(); pytorch_conv_relu_maxpool_x2(); leaky_relu_test(); imagescaler_test(); globalavgpool_test(); globalmaxpool_test(); }