/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include TEST_CASE(slice_test_1) { migraphx::program p; auto* mm = p.get_main_module(); std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}}; auto l0 = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction(migraphx::make_op("slice", {{"axes", {2}}, {"starts", {1}}, {"ends", {3}}}), l0); migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}}; EXPECT(p.get_output_shapes().back() == s2); p.compile(migraphx::make_target("ref")); migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}}; auto result = p.eval({}).back(); std::vector gold = {1, 2, 4, 5, 7, 8, 10, 11}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); EXPECT(result.get_shape() == sresult); } TEST_CASE(slice_test_2) { migraphx::program p; auto* mm = p.get_main_module(); std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); migraphx::shape s{migraphx::shape::int32_type, {2, 2, 3}}; auto l0 = mm->add_literal(migraphx::literal{s, data}); mm->add_instruction( migraphx::make_op("slice", {{"axes", {0, 1, 2}}, {"starts", {0, 0, 0}}, {"ends", {2, 2, 2}}}), l0); migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}}; EXPECT(p.get_output_shapes().back() == s2); p.compile(migraphx::make_target("ref")); migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {4, 2, 1}}; auto result = p.eval({}).back(); std::vector gold = {0, 1, 3, 4, 6, 7, 9, 10}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); EXPECT(result.get_shape() == sresult); } TEST_CASE(slice_var_inputs_static0) { migraphx::program p; auto* mm = p.get_main_module(); std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); migraphx::shape s0{migraphx::shape::int32_type, {2, 2, 3}}; auto l0 = mm->add_literal(migraphx::literal{s0, data}); migraphx::shape s1{migraphx::shape::int32_type, {1}}; auto starts = mm->add_parameter("starts", s1); auto ends = mm->add_parameter("ends", s1); mm->add_instruction(migraphx::make_op("slice", {{"axes", {2}}}), l0, starts, ends); p.compile(migraphx::make_target("ref")); migraphx::parameter_map params; std::vector start_data = {1}; std::vector end_data = {3}; params["starts"] = migraphx::argument(s1, start_data.data()); params["ends"] = migraphx::argument(s1, end_data.data()); auto result = p.eval(params).back(); std::vector gold = {1, 2, 4, 5, 7, 8, 10, 11}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); } TEST_CASE(slice_var_inputs_static1) { migraphx::program p; auto* mm = p.get_main_module(); std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); migraphx::shape s0{migraphx::shape::int32_type, {2, 2, 3}}; auto l0 = mm->add_literal(migraphx::literal{s0, data}); migraphx::shape s1{migraphx::shape::int32_type, {1}}; auto starts = mm->add_parameter("starts", s1); auto ends = mm->add_parameter("ends", s1); mm->add_instruction(migraphx::make_op("slice", {{"axes", {2}}}), l0, starts, ends); p.compile(migraphx::make_target("ref")); migraphx::parameter_map params; std::vector start_data = {-2}; std::vector end_data = {2831}; params["starts"] = migraphx::argument(s1, start_data.data()); params["ends"] = migraphx::argument(s1, end_data.data()); auto result = p.eval(params).back(); std::vector gold = {1, 2, 4, 5, 7, 8, 10, 11}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); } TEST_CASE(slice_var_inputs_static2) { migraphx::program p; auto* mm = p.get_main_module(); std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); migraphx::shape s0{migraphx::shape::float_type, {2, 2, 3}}; auto l0 = mm->add_literal(migraphx::literal{s0, data}); migraphx::shape s1{migraphx::shape::int64_type, {3}}; auto starts = mm->add_parameter("starts", s1); auto ends = mm->add_parameter("ends", s1); auto axes = mm->add_parameter("axes", s1); mm->add_instruction(migraphx::make_op("slice"), l0, starts, ends, axes); p.compile(migraphx::make_target("ref")); migraphx::parameter_map params; std::vector start_data = {0, 0, 0}; std::vector end_data = {2, 2, 2}; std::vector axes_data = {0, 1, 2}; params["starts"] = migraphx::argument(s1, start_data.data()); params["ends"] = migraphx::argument(s1, end_data.data()); params["axes"] = migraphx::argument(s1, axes_data.data()); auto result = p.eval(params).back(); std::vector gold = {0, 1, 3, 4, 6, 7, 9, 10}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); } TEST_CASE(slice_var_inputs_dyn) { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s0{migraphx::shape::int32_type, {{2, 4, {2, 4}}, {2, 4, {2, 4}}, {3, 8}}}; auto input = mm->add_parameter("input", s0); migraphx::shape s1{migraphx::shape::int32_type, {1}}; auto starts = mm->add_parameter("starts", s1); auto ends = mm->add_parameter("ends", s1); mm->add_instruction(migraphx::make_op("slice", {{"axes", {2}}}), input, starts, ends); p.compile(migraphx::make_target("ref")); migraphx::parameter_map params; migraphx::shape s2{migraphx::shape::int32_type, {2, 2, 3}}; std::vector input_data(2 * 2 * 3); std::iota(input_data.begin(), input_data.end(), 0); std::vector start_data = {1}; std::vector end_data = {3}; params["input"] = migraphx::argument(s2, input_data.data()); params["starts"] = migraphx::argument(s1, start_data.data()); params["ends"] = migraphx::argument(s1, end_data.data()); auto result = p.eval(params).back(); std::vector gold = {1, 2, 4, 5, 7, 8, 10, 11}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); } TEST_CASE(slice_dyn_test0) { // Slice a single dynamic dimension. ax1 slice limits are smaller than min; ax2 "ends" is // too large migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::int32_type, {{2, 3}, {2, 2}, {3, 3}}}; auto x = mm->add_parameter("x", s); mm->add_instruction( migraphx::make_op("slice", {{"axes", {1, 2}}, {"starts", {0, 1}}, {"ends", {1, 6}}}), x); migraphx::shape s2{migraphx::shape::int32_type, {{2, 3}, {1, 1}, {2, 2}}}; EXPECT(p.get_output_shapes().back() == s2); p.compile(migraphx::make_target("ref")); // the strides of sresult are those of the original shape, not // reduced to sliced size. migraphx::shape sresult{migraphx::shape::int32_type, {2, 1, 2}, {6, 3, 1}}; migraphx::shape input_fixed_shape{migraphx::shape::int32_type, {2, 2, 3}}; migraphx::parameter_map params; std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); params["x"] = migraphx::argument(input_fixed_shape, data.data()); auto result = p.eval(params).back(); std::vector gold = {1, 2, 7, 8}; std::vector results_vector(2 * 1 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); EXPECT(result.get_shape() == sresult); } TEST_CASE(slice_dyn_test1) { // Slice all three dynamic dimensions migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape s{migraphx::shape::int32_type, {{2, 2}, {2, 2}, {3, 3}}}; auto x = mm->add_parameter("x", s); mm->add_instruction( migraphx::make_op("slice", {{"axes", {0, 1, 2}}, {"starts", {0, 0, 0}}, {"ends", {2, 2, 2}}}), x); migraphx::shape s2{migraphx::shape::int32_type, {{2, 2}, {2, 2}, {2, 2}}}; EXPECT(p.get_output_shapes().back() == s2); p.compile(migraphx::make_target("ref")); migraphx::shape sresult{migraphx::shape::int32_type, {2, 2, 2}, {6, 3, 1}}; migraphx::shape input_fixed_shape{migraphx::shape::int32_type, {2, 2, 3}}; migraphx::parameter_map params; std::vector data(2 * 2 * 3); std::iota(data.begin(), data.end(), 0); params["x"] = migraphx::argument(input_fixed_shape, data.data()); auto result = p.eval(params).back(); std::vector gold = {0, 1, 3, 4, 6, 7, 9, 10}; std::vector results_vector(2 * 2 * 2); result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); }); EXPECT(migraphx::verify::verify_rms_range(results_vector, gold)); EXPECT(result.get_shape() == sresult); }