/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include /** * Reference test for the random_uniform operation. Also invokes the random_seed operation. */ TEST_CASE(random_uniform_test) { migraphx::program p; auto* mm = p.get_main_module(); uint64_t seed(0); size_t sample_size(200); // Shape of the random data migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}}; // data tensor must be allocated at this point but does not need to be initialized. std::vector data(sample_size); auto input = mm->add_literal(migraphx::literal(rs, data)); // Runtime randomization seed migraphx::shape seed_shape{migraphx::shape::uint64_type, {1}}; std::vector seed_data{seed}; auto seed_input = mm->add_literal(migraphx::literal(seed_shape, seed_data)); mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, input); p.compile(migraphx::make_target("ref")); // no params_map needed auto result = p.eval({}).back(); std::vector result_vec(sample_size); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // Compare result with the STL's mt19937 generator std::mt19937 gen(seed); std::uniform_real_distribution<> dis(0.0, 1.0); std::vector rand_samples(sample_size); std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); }); EXPECT(migraphx::verify::verify_range_with_tolerance(result_vec, migraphx::verify::expected{rand_samples}, migraphx::verify::tolerance{0.00001})); } TEST_CASE(random_uniform_int_test) { // random uniform distribution with an integer type input shape migraphx::program p; auto* mm = p.get_main_module(); float seed(0.1); size_t sample_size(200); // Shape of the random data migraphx::shape rs{migraphx::shape::uint16_type, {1, sample_size}}; // data tensor must be allocated at this point but does not need to be initialized. std::vector data(sample_size); auto input = mm->add_literal(migraphx::literal(rs, data)); // Runtime randomization seed migraphx::shape seed_shape{migraphx::shape::float_type, {1}}; std::vector seed_data{seed}; auto seed_input = mm->add_literal(migraphx::literal(seed_shape, seed_data)); mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, input); p.compile(migraphx::make_target("ref")); migraphx::parameter_map params0; auto result = p.eval(params0).back(); std::vector result_vec(sample_size); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // Compare result with the STL's mt19937 generator std::mt19937 gen(seed); std::uniform_int_distribution dis; std::vector gold_rand_samples(sample_size); std::generate(gold_rand_samples.begin(), gold_rand_samples.end(), [&]() { return dis(gen); }); EXPECT(migraphx::verify::verify_rms_range(result_vec, gold_rand_samples)); } TEST_CASE(random_uniform_dyn_test) { migraphx::program p; auto* mm = p.get_main_module(); uint64_t seed(17); size_t sample_size(200); // Shape of the random data migraphx::shape rs{migraphx::shape::float_type, {{1, 2}, {2, sample_size + 1}}}; auto input = mm->add_parameter("Input_1", rs); // Runtime randomization seed migraphx::shape seed_shape{migraphx::shape::uint64_type, {1}}; auto seed_input = mm->add_parameter("Seed", seed_shape); mm->add_instruction(migraphx::make_op("random_uniform", {}), seed_input, input); p.compile(migraphx::make_target("ref")); // Create a dummy input to hold the random data migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {sample_size}}; migraphx::parameter_map params0; params0["Input_1"] = migraphx::argument(input_fixed_shape1); std::vector seed_data = {seed}; params0["Seed"] = migraphx::argument(seed_shape, seed_data.data()); auto result = p.eval(params0).back(); std::vector result_vec(sample_size); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // Compare result with the STL's mt19937 generator std::mt19937 gen(seed); std::uniform_real_distribution<> dis(0.0, 1.0); std::vector gold_rand_samples(sample_size); std::generate(gold_rand_samples.begin(), gold_rand_samples.end(), [&]() { return dis(gen); }); EXPECT(migraphx::verify::verify_rms_range(result_vec, gold_rand_samples)); } TEST_CASE(random_uniform_and_seed_test) { migraphx::program p; auto* mm = p.get_main_module(); size_t sample_size(20000); // Shape of the random data migraphx::shape rs{migraphx::shape::float_type, {{1, 2}, {2, sample_size + 1}}}; auto input = mm->add_parameter("Input_1", rs); // Runtime randomization seed auto seed_input = mm->add_instruction(migraphx::make_op("random_seed")); mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, input); p.compile(migraphx::make_target("ref")); // Create a dummy input to hold the random data migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {sample_size}}; migraphx::parameter_map params0; params0["Input_1"] = migraphx::argument(input_fixed_shape1); auto result = p.eval(params0).back(); result.visit([&](auto output) { EXPECT(output.size() == sample_size); }); // Do not check the content of the data since it's not repeatable }