/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_instancenorm : op_parser { std::set valid_types = {shape::float_type, shape::half_type, shape::double_type}; std::vector operators() const { return {{"InstanceNormalization"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias // mean = reduce_mean({D1, D2, ... Dk}, x) // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2) float epsilon = 1e-5f; if(contains(info.attributes, "epsilon")) { epsilon = parser.parse_value(info.attributes.at("epsilon")).at(); } auto x = args[0]; auto scale = args[1]; auto bias = args[2]; auto dims = x->get_shape().lens(); auto dtype = x->get_shape().type(); if(not contains(valid_types, dtype)) MIGRAPHX_THROW(opd.op_name + ": invalid output type: " + std::to_string(dtype) + ". Valid types are 1 (float), 10 (half), and 11 (double)."); auto ndims = dims.size(); assert(ndims >= 2); auto kdims = ndims - 2; std::vector axes(kdims); std::iota(axes.begin(), axes.end(), 2); auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x); auto mean_bcast = info.add_instruction(make_op("multibroadcast", {{"out_lens", dims}}), mean); auto l0 = info.add_instruction(make_op("sqdiff"), x, mean_bcast); auto variance = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), l0); auto l1 = info.add_instruction(make_op("sub"), x, mean_bcast); auto epsilon_literal = info.add_literal(literal{shape{dtype}, {epsilon}}); auto epsilon_bcast = info.add_instruction(make_op("multibroadcast", {{"out_lens", dims}}), epsilon_literal); auto variance_bcast = info.add_instruction(make_op("multibroadcast", {{"out_lens", dims}}), variance); auto l2 = info.add_instruction(make_op("add"), variance_bcast, epsilon_bcast); auto l3 = info.add_instruction(make_op("rsqrt"), l2); auto l4 = info.add_instruction(make_op("mul"), l1, l3); auto scale_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale); ; auto bias_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias); auto l5 = info.add_instruction(make_op("mul"), l4, scale_bcast); return info.add_instruction(make_op("add"), l5, bias_bcast); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx