#include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_randomnormal_ops : op_parser { const std::set valid_types = { shape::float_type, shape::half_type, shape::double_type}; std::vector operators() const { return {{"RandomNormal"}, {"RandomNormalLike"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { int dtype = 1; bool use_dtype = false; if(contains(info.attributes, "dtype")) { dtype = info.attributes.at("dtype").i(); use_dtype = true; } shape::type_t out_type = get_type(dtype); if(not contains(valid_types, out_type)) MIGRAPHX_THROW(opd.op_name + ": invalid output type: " + std::to_string(dtype) + ". Valid types are 1 (float), 10 (half), and 11 (double)."); float mean = 0.0; if(contains(info.attributes, "mean")) mean = info.attributes.at("mean").f(); float scale = 1.0; if(contains(info.attributes, "scale")) scale = info.attributes.at("scale").f(); shape out_shape; if(contains(info.attributes, "shape")) { // RandomNormal: // output type and shape must come from attributes std::vector out_lens; literal ls = parser.parse_value(info.attributes.at("shape")); ls.visit([&](auto s) { out_lens.assign(s.begin(), s.end()); }); out_shape = shape{out_type, out_lens}; } else if(args.size() == 1) { // RandomNormalLike: // output type and shape are the same as the input's by default // dtype is used instead when attribute is set if(not contains(valid_types, args[0]->get_shape().type())) MIGRAPHX_THROW(opd.op_name + ": invalid output type: " + std::to_string(args[0]->get_shape().type()) + ". Valid types are float, half, and double."); out_shape = use_dtype ? shape{out_type, args[0]->get_shape().lens()} : args[0]->get_shape(); } else { MIGRAPHX_THROW(opd.op_name + ": cannot deduce shape without shape attribute or argument."); } std::mt19937 gen(std::chrono::high_resolution_clock::now().time_since_epoch().count()); if(contains(info.attributes, "seed")) gen.seed(info.attributes.at("seed").f()); std::normal_distribution<> d(mean, scale); std::vector rand_vals(out_shape.elements()); std::generate(rand_vals.begin(), rand_vals.end(), [&]() { return d(gen); }); return info.add_literal(literal{out_shape, rand_vals}); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx