/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include namespace { migraphx::program create_program(const migraphx::shape& data_shape, int64_t sorted, std::optional axis) { migraphx::program p; auto* mm = p.get_main_module(); auto data = mm->add_parameter("X", data_shape); auto op = axis ? migraphx::make_op("unique", {{"axis", *axis}, {"sorted", sorted}}) : migraphx::make_op("unique", {{"sorted", sorted}}); auto r = mm->add_instruction(op, data); auto r0 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), r); auto r1 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 1}}), r); auto r2 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 2}}), r); auto r3 = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 3}}), r); mm->add_return({r0, r1, r2, r3}); return p; }; template auto run_program(T& data, const migraphx::shape& data_shape, int sorted, std::optional axis = std::nullopt) { auto p = create_program(data_shape, sorted, axis); p.compile(migraphx::make_target("ref")); migraphx::parameter_map pp; pp["X"] = migraphx::argument(data_shape, data.data()); auto rets = p.eval(pp); std::vector::value_type> y; rets[0].visit([&](auto v) { y.assign(v.begin(), v.end()); }); std::vector y_idx; rets[1].visit([&](auto v) { y_idx.assign(v.begin(), v.end()); }); std::vector x_rev_idx; rets[2].visit([&](auto v) { x_rev_idx.assign(v.begin(), v.end()); }); std::vector y_ct; rets[3].visit([&](auto v) { y_ct.assign(v.begin(), v.end()); }); return std::make_tuple(y, y_idx, x_rev_idx, y_ct); } } // namespace // sorted. single entry TEST_CASE(unique_sorted_single_entry_test) { std::vector data = {2}; int64_t axis = 0; int64_t sorted = 1; std::vector lens = {1}; migraphx::shape data_shape{migraphx::shape::int32_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {2}; EXPECT(y == gold_val); std::vector gold_y_idx = {0}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {1}; EXPECT(ct == gold_ct); } // unsorted. single entry TEST_CASE(unique_unsorted_single_entry_test) { std::vector data = {3.33}; int64_t axis = -1; int64_t sorted = 0; std::vector lens = {1}; migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {3.33}; EXPECT(y == gold_val); std::vector gold_y_idx = {0}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {1}; EXPECT(ct == gold_ct); } // case 2 sorted. all unique input.. TEST_CASE(unique_sorted_all_unique_test) { std::vector data = {2.1, 2.3, 2.4, 2.5, 1.9}; int64_t axis = 0; int64_t sorted = 1; std::vector lens = {5}; migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {1.9, 2.1, 2.3, 2.4, 2.5}; EXPECT(y == gold_val); std::vector gold_y_idx = {4, 0, 1, 2, 3}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {1, 2, 3, 4, 0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {1, 1, 1, 1, 1}; EXPECT(ct == gold_ct); } // case 3 unsorted. all unique input TEST_CASE(unique_unsorted_all_unique_test) { std::vector data = {2.1, 2.3, 2.4, 2.5, 1.9}; int64_t axis = 0; int64_t sorted = 0; std::vector lens = {5}; migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {2.1, 2.3, 2.4, 2.5, 1.9}; EXPECT(y == gold_val); std::vector gold_y_idx = {0, 1, 2, 3, 4}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 1, 2, 3, 4}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {1, 1, 1, 1, 1}; EXPECT(ct == gold_ct); } // case 4 sorted (with dup entries) TEST_CASE(unique_sorted_dupes_test) { std::vector data = {2.1, 2.3, 2.4, 2.5, 1.9, 2.5, 2.3, 2.5}; int64_t axis = 0; int64_t sorted = 1; std::vector lens = {8}; migraphx::shape data_shape{migraphx::shape::double_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {1.9, 2.1, 2.3, 2.4, 2.5}; EXPECT(y == gold_val); std::vector gold_ct = {1, 1, 2, 1, 3}; EXPECT(ct == gold_ct); } // case 5 unsorted (with dup entries) TEST_CASE(unique_unsorted_dupes_test) { std::vector data = {2.1, 2.3, 2.4, 2.5, 1.9, 2.5, 2.3, 2.1}; int64_t axis = -1; int64_t sorted = 0; std::vector lens = {8}; migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {2.1, 2.3, 2.4, 2.5, 1.9}; EXPECT(y == gold_val); std::vector gold_y_idx = {0, 1, 2, 3, 4}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 1, 2, 3, 4, 3, 1, 0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {2, 2, 1, 2, 1}; EXPECT(ct == gold_ct); } TEST_CASE(unique_3D_no_axis_test) { // sorted 3D (with dup entries). no axis int sorted = 1; std::vector data_3d = {2.1, 2.3, 2.4, 2.5, 1.9, 2.5, 2.3, 2.5}; std::vector lens = {2, 2, 2}; // 3D data. type double migraphx::shape data_shape{migraphx::shape::double_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data_3d, data_shape, sorted); std::vector gold_val = {1.9, 2.1, 2.3, 2.4, 2.5}; EXPECT(y == gold_val); std::vector gold_ct = {1, 1, 2, 1, 3}; EXPECT(ct == gold_ct); } TEST_CASE(unique_3D_no_axis_unsorted_test) // unsorted 3D (with dup entries). no axis { int sorted = 0; std::vector data = {2.1, 2.3, 2.4, 2.5, 1.9, 2.5, 2.3, 2.1}; std::vector lens = {2, 1, 4}; // 3D data. type float migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted); std::vector gold_val = {2.1, 2.3, 2.4, 2.5, 1.9}; EXPECT(y == gold_val); std::vector gold_y_idx = {0, 1, 2, 3, 4}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 1, 2, 3, 4, 3, 1, 0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {2, 2, 1, 2, 1}; EXPECT(ct == gold_ct); } // unique integer sub-tensors: sorted (with dup entries) TEST_CASE(unique_subtensors_sorted_test) { /* input_X = [[1, 0, 0], [1, 0, 0], [2, 3, 4]] attribute_sorted = 1 attribute_axis = 0 output_Y = [[1, 0, 0], [2, 3, 4]] output_indices = [0, 2] output_inverse_indices = [0, 0, 1] output_counts = [2, 1] */ int axis = 0; int sorted = 1; std::vector data = {1, 0, 0, 1, 0, 0, 2, 3, 4}; std::vector lens = {3, 3}; migraphx::shape data_shape{migraphx::shape::int32_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {1, 0, 0, 2, 3, 4}; EXPECT(y == gold_val); std::vector gold_y_idx = {0, 2}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 0, 1}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {2, 1}; EXPECT(ct == gold_ct); } // unique integer sub-tensors: un-sorted (with dup entries) TEST_CASE(unique_subtensors_neg_axis_test) { /* input_X = [[1, 0, 0], [1, 0, 0], [2, 3, 4]] attribute_sorted = 0 attribute_axis = 0 output_Y = [[1, 0, 0], [2, 3, 4]] output_indices = [0, 2] output_inverse_indices = [0, 0, 1] output_counts = [2, 1] */ int axis = -2; // == 0 int sorted = 0; std::vector data = {1, 0, 0, 1, 0, 0, 2, 3, 4}; std::vector lens = {3, 3}; migraphx::shape data_shape{migraphx::shape::int32_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {1, 0, 0, 2, 3, 4}; EXPECT(y == gold_val); std::vector gold_y_idx = {0, 2}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 0, 1}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {2, 1}; EXPECT(ct == gold_ct); } // unique float sub-tensors: sorted (with dup entries) axis = 0 TEST_CASE(unique_subtensors_zero_axis_test) { /* input_x = [[[1., 1.], [0., 1.], [2., 1.], [0., 1.]], [[1., 1.], [0., 1.], [2., 1.], [0., 1.]]] attribute_sorted = 1 attribute_axis = 0 */ int axis = 0; int sorted = 1; std::vector data = {1., 1., 0., 1., 2., 1., 0., 1., 1., 1., 0., 1., 2., 1., 0., 1.}; std::vector lens = {2, 4, 2}; migraphx::shape data_shape{migraphx::shape::float_type, lens}; const auto& [y, idx, x_rev, ct] = run_program(data, data_shape, sorted, axis); std::vector gold_val = {1., 1., 0., 1., 2., 1., 0., 1.}; EXPECT(y == gold_val); std::vector gold_y_idx = {0}; EXPECT(idx == gold_y_idx); std::vector gold_x_rev = {0, 0}; EXPECT(x_rev == gold_x_rev); std::vector gold_ct = {2}; EXPECT(ct == gold_ct); }