/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace cpu { struct dnnl_pooling : dnnl_extend_op { std::vector arg_map(int) const { return {MIGRAPHX_DNNL_PREFIX(ARG_SRC)}; } dnnl::pooling_v2_forward::desc get_desc(const std::unordered_map& m) const { auto algo = op.mode == op::pooling_mode::max ? dnnl::algorithm::pooling_max : dnnl::algorithm::pooling_avg; auto kdims = op.kdims(); std::vector padding_l(op.padding.begin(), op.padding.begin() + kdims); std::vector padding_r(op.padding.begin() + kdims, op.padding.end()); // Note: It is not documented, but the default dilation seems to be 0 instead of 1. // We need to offset dilations with -1. std::vector dilations; std::transform(op.dilations.cbegin(), op.dilations.cend(), std::back_inserter(dilations), [](size_t d) { return d - 1; }); return {dnnl::prop_kind::forward_inference, algo, m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)), m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)), to_dnnl_dims(op.stride), to_dnnl_dims(op.lengths), to_dnnl_dims(dilations), to_dnnl_dims(padding_l), to_dnnl_dims(padding_r)}; } }; } // namespace cpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx