/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_groupnorm : op_parser { std::vector operators() const { return {{"GroupNormalization"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, std::vector args) const { float epsilon = 1e-5f; if(contains(info.attributes, "epsilon")) { epsilon = parser.parse_value(info.attributes.at("epsilon")).at(); } size_t num_groups; if(contains(info.attributes, "num_groups")) { num_groups = parser.parse_value(info.attributes.at("num_groups")).at(); } else { MIGRAPHX_THROW("PARSE_GROUPNORM: num_groups must be available"); } if(args.size() != 3) { MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input count"); } auto x = args.at(0); auto scale = args.at(1); auto bias = args.at(2); auto x_shape = x->get_shape(); auto x_dtype = x_shape.type(); auto x_dims = x_shape.lens(); if(x_shape.ndim() <= 2) { MIGRAPHX_THROW("PARSE_GROUPNORM: invalid input shape"); } auto c = x_shape.lens().at(1); if(c % num_groups != 0) { MIGRAPHX_THROW( "PARSE_GROUPNORM: num_groups should be a divisor of the number of channels"); } auto group_size = c / num_groups; if(scale->get_shape().ndim() != 1 or scale->get_shape().lens().at(0) != num_groups) { MIGRAPHX_THROW("PARSE_GROUPNORM: scale tensor shape should be num_groups"); } if(bias->get_shape().ndim() != 1 or bias->get_shape().lens().at(0) != num_groups) { MIGRAPHX_THROW("PARSE_GROUPNORM: bias tensor shape should be num_groups"); } // Original shape: N x C x D1 x ... x Dn // New shape: N x num_groups x C // num_groups x D1 x ... x Dn std::vector dims = {x_dims.at(0), num_groups, group_size}; std::copy(x_dims.begin() + 2, x_dims.end(), std::back_inserter(dims)); auto x_reshaped = info.add_instruction(make_op("reshape", {{"dims", dims}}), x); // Axes for D1 x ... x Dn std::vector axes(dims.size() - 2); std::iota(axes.begin(), axes.end(), 2); // y = (x - mean) * rsqrt(variance + epsilon) * scale + bias // mean = reduce_mean({D1, D2, ... Dk}, x) // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2) auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_reshaped); auto x_sub_mean = info.add_common_op("sub", x_reshaped, mean); auto x_sqdiff_mean = info.add_common_op("sqdiff", x_reshaped, mean); auto variance = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x_sqdiff_mean); epsilon = (x_dtype == migraphx::shape::half_type and std::abs(epsilon) < 1e-7) ? 1e-7 : epsilon; auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_dtype}, {epsilon}}); auto var_eps = info.add_common_op("add", variance, eps); auto rsqrt = info.add_instruction(make_op("rsqrt"), var_eps); auto result = info.add_common_op("mul", x_sub_mean, rsqrt); auto scale_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale); auto bias_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias); auto scaled = info.add_instruction(make_op("mul"), result, scale_bcast); auto y = info.add_instruction(make_op("add"), scaled, bias_bcast); auto y_reshaped = info.add_instruction(make_op("reshape", {{"dims", x_dims}}), y); return y_reshaped; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx