/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_slice : op_parser { std::vector operators() const { return {{"Slice"}}; } struct slice_desc { op::slice op; std::vector op_args; std::vector steps; std::vector raxes; void always_insert(instruction_ref arg) { op_args.insert(op_args.begin(), arg); } std::vector insert(instruction_ref arg) { std::vector result; migraphx::argument arg_value = arg->eval(); if(arg_value.empty()) { op_args.insert(op_args.begin(), arg); } else { arg_value.visit([&](auto s) { result.assign(s.begin(), s.end()); }); } return result; } }; instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& parser, const onnx_parser::node_info& info, const std::vector& args) const { auto sd = construct_slice_desc(parser, info, args); auto ins = info.add_instruction(sd.op, sd.op_args); if(not sd.raxes.empty()) { ins = info.add_instruction(make_op("reverse", {{"axes", sd.raxes}}), ins); } // If any steps are other than default 1, add a "steps" op if(std::any_of(sd.steps.begin(), sd.steps.end(), [](auto s) { return std::abs(s) != 1; })) { std::vector nsteps; std::transform(sd.steps.begin(), sd.steps.end(), std::back_inserter(nsteps), [](auto s) { return std::abs(s); }); return ins = info.add_instruction( make_op("step", {{"axes", sd.op.axes}, {"steps", nsteps}}), ins); } else return ins; } slice_desc construct_slice_desc(const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { slice_desc sd; // slice can have up to 5 inputs, we first check the 5th one // to decide whether MIGRAPHX can handle this slice. if(args.size() == 5) { migraphx::argument step_arg = args.back()->eval(); check_arg_empty(step_arg, "PARSE_SLICE: cannot handle variable steps for slice"); step_arg.visit([&](auto s) { sd.steps.assign(s.begin(), s.end()); }); } if(args.size() >= 4) { sd.op.axes = sd.insert(args.at(3)); } else if(contains(info.attributes, "axes")) { literal s = parser.parse_value(info.attributes.at("axes")); s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.axes)); }); } if(args.size() >= 3) { sd.op.ends = sd.insert(args.at(2)); } else if(contains(info.attributes, "ends")) { literal s = parser.parse_value(info.attributes.at("ends")); s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.ends)); }); } if(args.size() >= 2) { sd.op.starts = sd.insert(args.at(1)); } else if(contains(info.attributes, "starts")) { literal s = parser.parse_value(info.attributes.at("starts")); s.visit([&](auto v) { copy(v, std::back_inserter(sd.op.starts)); }); } // data input argument sd.always_insert(args.at(0)); // If axes arg is not given, the default is all of them. if(sd.op.axes.empty() and sd.op_args.size() <= 3) { std::vector axes(args[0]->get_shape().ndim()); std::iota(axes.begin(), axes.end(), int64_t{0}); sd.op.axes = axes; } if(not sd.steps.empty()) { if(sd.op.starts.empty() or sd.op.ends.empty()) MIGRAPHX_THROW("PARSE_SLICE: steps and variable starts and ends is not supported"); if(sd.op.axes.empty()) MIGRAPHX_THROW("PARSE_SLICE: steps and variable axes is not supported"); } assert(sd.steps.empty() or sd.steps.size() == sd.op.axes.size()); // If any axes have negative step, prepare to add a "reverse" op for(auto i : range(sd.steps.size())) { if(sd.steps[i] >= 0) continue; sd.op.starts[i] += 1; if(sd.op.starts[i] == 0) sd.op.starts[i] = INT_MAX; sd.op.ends[i] += 1; sd.raxes.push_back(sd.op.axes[i]); std::swap(sd.op.starts[i], sd.op.ends[i]); } return sd; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx