/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void rewrite_batchnorm::apply(module& m) const { for(auto ins : iterator_for(m)) { if(ins->name() != "batch_norm_inference") continue; // Get scale, bias, mean, variance from inputs auto gamma = ins->inputs()[1]->eval(); auto bias = ins->inputs()[2]->eval(); auto mean = ins->inputs()[3]->eval(); auto variance = ins->inputs()[4]->eval(); if(any_of({gamma, bias, mean, variance}, [](auto arg) { return arg.empty(); })) continue; std::vector lens = ins->inputs()[1]->get_shape().lens(); shape s{ins->get_shape().type(), lens}; // Get epsilon auto bn_op = any_cast(ins->get_operator()); auto epsilon = bn_op.epsilon; argument a{s}; argument b{s}; visit_all(gamma, bias, mean, variance, a, b)( [&](auto gamma2, auto bias2, auto mean2, auto variance2, auto a2, auto b2) { dfor(a.get_shape().elements())( [&](std::size_t c) { a2[c] = gamma2[c] / std::sqrt(variance2[c] + epsilon); }); dfor(b.get_shape().elements())([&](std::size_t c) { b2[c] = bias2[c] - (gamma2[c] * mean2[c] / std::sqrt(variance2[c] + epsilon)); }); }); auto broadcast = op::broadcast{1, ins->get_shape().lens()}; auto a_ins = m.add_literal({a.get_shape(), a.data()}); auto a_broadcast = m.insert_instruction(ins, broadcast, a_ins); auto mul = m.insert_instruction(ins, make_op("mul"), ins->inputs().front(), a_broadcast); auto b_ins = m.add_literal({b.get_shape(), b.data()}); auto b_broadcast = m.insert_instruction(ins, broadcast, b_ins); auto add = m.insert_instruction(ins, make_op("add"), mul, b_broadcast); m.replace_instruction(ins, add); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx