/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_FP16_INSTANCENORM_CONVERT); namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_instancenorm : op_parser { std::set valid_types = {shape::float_type, shape::half_type, shape::double_type}; std::vector operators() const { return {{"InstanceNormalization"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, onnx_parser::node_info info, std::vector oargs) const { // y = scale * ( x - mean ) / sqrt ( variance + epsilon ) + bias // mean = reduce_mean({D1, D2, ... Dk}, x) // variance = reduce_mean({D1, D2, ... Dk}, (x - mean)^2) // Convert fp16 to fp32 to workaround for FP16 accuracy issues with reduce_mean/variance. bool convert_fp16 = true; if(enabled(MIGRAPHX_DISABLE_FP16_INSTANCENORM_CONVERT{})) { convert_fp16 = false; } float epsilon = 1e-5f; if(contains(info.attributes, "epsilon")) { epsilon = parser.parse_value(info.attributes.at("epsilon")).at(); } auto dtype = oargs[0]->get_shape().type(); auto literal_dtype = dtype; std::vector args; // cppcheck-suppress knownConditionTrueFalse if(dtype == shape::half_type and convert_fp16) { std::transform(oargs.begin(), oargs.end(), std::back_inserter(args), [&](const auto i) { return info.add_instruction( make_op("convert", {{"target_type", shape::float_type}}), i); }); literal_dtype = shape::float_type; } else { args = oargs; } auto x = args[0]; auto scale = args[1]; auto bias = args[2]; if(not contains(valid_types, dtype)) MIGRAPHX_THROW(opd.op_name + ": invalid output type: " + std::to_string(dtype) + ". Valid types are 1 (float), 10 (half), and 11 (double)."); auto ndims = x->get_shape().ndim(); assert(ndims >= 2); auto kdims = ndims - 2; std::vector axes(kdims); std::iota(axes.begin(), axes.end(), 2); auto mean = info.add_instruction(make_op("reduce_mean", {{"axes", axes}}), x); // Use add_common_op() to insert multibroadcast/convert instructions where needed when // inputs may be either static or dynamic. auto l1 = info.add_common_op("sub", x, mean); // for the fp16, if not converting to fp32 then divide `x` and `mean` by `sqrt(n)` and take // reduce_sum to calculate variance i.e. // var = reduce_sum((x/s_n - mean/s_n)^2) where s_n = sqrt(n) std::string reduce_op_name = (dtype == shape::half_type and not convert_fp16) ? "reduce_sum" : "reduce_mean"; if(dtype == shape::half_type and not convert_fp16) { if(x->get_shape().dynamic()) { MIGRAPHX_THROW("PARSE_INSTANCENORM: half type not supported with dynamic shape " "unless convert_fp16 is TRUE"); } auto dims = x->get_shape().lens(); double n = std::accumulate(dims.begin() + 2, dims.end(), 1, [&](const auto& i, const auto& j) { return i * j; }); n = 1.0 / std::sqrt(n); auto n_literal = info.add_literal(literal{dtype, {n}}); x = info.add_common_op("mul", {x, n_literal}); } auto l0 = info.add_common_op("sqdiff", x, mean); auto variance = info.add_instruction(make_op(reduce_op_name, {{"axes", axes}}), l0); auto epsilon_literal = info.add_literal(literal{shape{literal_dtype}, {epsilon}}); auto l2 = info.add_common_op("add", variance, epsilon_literal); auto l3 = info.add_instruction(make_op("rsqrt"), l2); auto l4 = info.add_common_op("mul", l1, l3); // add_common_op() doesn't apply the plain broadcast op, so we add that op explicitly for // both scale and bias. instruction_ref scale_bcast; instruction_ref bias_bcast; if(x->get_shape().dynamic()) { scale_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}}), scale, x); bias_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}}), bias, x); } else { auto dims = x->get_shape().lens(); scale_bcast = info.add_instruction( make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), scale); bias_bcast = info.add_instruction(make_op("broadcast", {{"axis", 1}, {"out_lens", dims}}), bias); } auto l5 = info.add_instruction(make_op("mul"), l4, scale_bcast); auto ret = info.add_instruction(make_op("add"), l5, bias_bcast); if(dtype == shape::half_type and convert_fp16) { return info.add_instruction(make_op("convert", {{"target_type", shape::half_type}}), ret); } return ret; } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx