#include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { const auto& get_nearest_op(const std::string& mode) { using nearest_op = std::function; static std::unordered_map const nearest_ops = { {"round_prefer_floor", [=](std::size_t d_in, double val) { val = std::max(0.0, std::min(d_in - 1.0, val)); return static_cast(std::ceil((val - 0.5))); }}, {"round_prefer_ceil", [=](std::size_t d_in, double val) { val = std::max(0.0, std::min(d_in - 1.0, val)); return static_cast(std::round((val))); }}, {"floor", [=](std::size_t d_in, double val) { val = std::max(0.0, std::min(d_in - 1.0, val)); return static_cast(std::floor((val))); }}, {"ceil", [=](std::size_t d_in, double val) { val = std::max(0.0, std::min(d_in - 1.0, val)); return static_cast(std::ceil((val))); }}}; if(!contains(nearest_ops, mode)) { MIGRAPHX_THROW("PARSE_RESIZE: nearest_mode " + mode + " not supported!"); } return nearest_ops.at(mode); } const auto& get_original_idx_op(const std::string& mode) { using original_idx_op = std::function; static std::unordered_map const idx_ops = { {"half_pixel", [=](std::size_t, std::size_t, std::size_t idx, double scale) { return (idx + 0.5) / scale - 0.5; }}, {"pytorch_half_pixel", [=](std::size_t, std::size_t l_out, std::size_t idx, double scale) { return l_out > 1 ? (idx + 0.5) / scale - 0.5 : 0.0; }}, {"align_corners", [=](std::size_t l_in, std::size_t l_out, std::size_t idx, double) { return (l_out == 1) ? 0.0 : (1.0 * idx * (l_in - 1.0) / (l_out - 1.0)); }}, {"asymmetric", [=](std::size_t, std::size_t, std::size_t idx, double scale) { return idx / scale; }}, {"tf_half_pixel_for_nn", [=](std::size_t, std::size_t, std::size_t idx, double scale) { return (idx + 0.5) / scale; }}}; if(!contains(idx_ops, mode)) { MIGRAPHX_THROW("PARSE_RESIZE: coordinate_transformation_mode " + mode + " not supported!"); } return idx_ops.at(mode); } static std::vector calc_neighbor_points(const std::vector>>& vvv_ind, int i_dim, const std::vector>& vec_dims, const shape& in_s) { if(i_dim == vvv_ind.size()) { std::vector vec_ind; vec_ind.resize(vec_dims.size()); std::transform(vec_dims.begin(), vec_dims.end(), vec_ind.begin(), [&](auto idx) { return static_cast(in_s.index(idx)); }); return vec_ind; } const auto& vv_ind = vvv_ind[i_dim]; const auto& vv_lo = vv_ind.at(0); std::vector> vec_dims1; for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size()) { std::transform(vv_lo.begin(), vv_lo.end(), vec_dims.begin() + start, std::back_inserter(vec_dims1), [](auto i, auto dim) { dim.push_back(i); return dim; }); } const auto& vv_hi = vv_ind.at(1); for(std::size_t start = 0; start < vec_dims.size(); start += vv_lo.size()) { std::transform(vv_hi.begin(), vv_hi.end(), vec_dims.begin() + start, std::back_inserter(vec_dims1), [](auto i, auto dim) { dim.push_back(i); return dim; }); } return calc_neighbor_points(vvv_ind, i_dim + 1, vec_dims1, in_s); } static std::string get_coord_trans_mode(const onnx_parser::attribute_map& attr) { std::string coord_trans_mode = "half_pixel"; if(contains(attr, "coordinate_transformation_mode")) { coord_trans_mode = attr.at("coordinate_transformation_mode").s(); // does not support transformation mode "tf_crop_and_resize" if(coord_trans_mode == "tf_crop_and_resize") { MIGRAPHX_THROW("PARSE_RESIZE: \"tf_crop_and_resize\" mode is not supported!"); } } return coord_trans_mode; } static std::string get_mode(const onnx_parser::attribute_map& attr) { std::string mode = "nearest"; if(contains(attr, "mode")) { mode = attr.at("mode").s(); if(mode != "nearest" and mode != "linear") { MIGRAPHX_THROW("PARSE_RESIZE: only nearest and linear modes are supported!"); } } return mode; } static std::string get_nearest_mode(const onnx_parser::attribute_map& attr) { std::string nearest_mode = "round_prefer_floor"; if(contains(attr, "nearest_mode")) { nearest_mode = attr.at("nearest_mode").s(); } return nearest_mode; } struct parse_resize : op_parser { std::vector operators() const { return {{"Resize"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, onnx_parser::node_info info, std::vector args) const { // coord transform mode std::string coord_trans_mode = get_coord_trans_mode(info.attributes); // mode: only nearest and linear modes are supported for now std::string mode = get_mode(info.attributes); // nearest mode std::string nearest_mode = get_nearest_mode(info.attributes); // check exclude_outside, only support 0 if(contains(info.attributes, "exclude_outside") and info.attributes.at("exclude_outside").i() == 1) { MIGRAPHX_THROW("PARSE_RESIZE: exclude_outside 1 is not supported!"); } // input data shape info auto in_s = args[0]->get_shape(); auto in_lens = in_s.lens(); // output shape is explicitly specified std::vector out_lens(in_lens.size()); // scale std::vector vec_scale; for(const auto& arg : args) { if(arg->name() == "undefined" or arg == args.front()) { continue; } // skipped empty input auto lens = arg->get_shape().lens(); if(lens.empty()) { continue; } auto type = arg->get_shape().type(); // output size if(type == shape::int64_type) { auto arg_out_s = arg->eval(); check_arg_empty(arg_out_s, "PARSE_RESIZE: dynamic output size is not supported!"); arg_out_s.visit([&](auto ol) { out_lens.assign(ol.begin(), ol.end()); }); if(out_lens.size() != in_lens.size()) { MIGRAPHX_THROW("PARSE_RESIZE: specified output size does not match input size"); } // compute the scale vec_scale.resize(in_lens.size()); std::transform(in_lens.begin(), in_lens.end(), out_lens.begin(), vec_scale.begin(), [](auto iss, auto oss) { return 1.0 * oss / iss; }); } else { // scale input if(lens[0] == in_lens.size()) { auto arg_scale = arg->eval(); check_arg_empty(arg_scale, "PARSE_RESIZE: dynamic input scale is not supported!"); arg_scale.visit([&](auto v) { vec_scale.assign(v.begin(), v.end()); }); if(in_lens.size() != vec_scale.size()) { MIGRAPHX_THROW("PARSE_RESIZE: ranks of input and scale are different!"); } std::transform(in_lens.begin(), in_lens.end(), vec_scale.begin(), out_lens.begin(), [&](auto idx, auto scale) { return static_cast(idx * scale); }); } } } shape out_s{in_s.type(), out_lens}; std::size_t out_elements = out_s.elements(); auto idx_op = get_original_idx_op(coord_trans_mode); // reshape input to one-dimension std::vector rsp_lens = {static_cast(in_s.elements())}; args[0] = info.make_contiguous(args[0]); auto rsp = info.add_instruction(make_op("reshape", {{"dims", rsp_lens}}), args[0]); if(mode == "nearest") { std::vector ind(out_elements); // map out_idx to in_idx auto nearest_op = get_nearest_op(nearest_mode); shape_for_each(out_s, [&](auto idx) { auto in_idx = idx; for(auto ii = 0; ii < in_lens.size(); ++ii) { auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]); in_idx[ii] = nearest_op(in_lens[ii], idx_val); } ind[out_s.index(idx)] = static_cast(in_s.index(in_idx)); }); shape ind_s{shape::int32_type, out_lens}; auto ins_ind = info.add_literal(literal(ind_s, ind)); return info.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind); } // linear mode else { auto nearest_floor = get_nearest_op("floor"); auto nearest_ceil = get_nearest_op("ceil"); // get the number of dimensions std::size_t n_dim = out_lens.size(); std::vector> vv_ind(2, std::vector(out_elements)); std::vector>> vvv_ind(n_dim, vv_ind); std::vector> delta(n_dim, std::vector(out_elements)); shape_for_each(out_s, [&](auto idx) { auto in_idx = idx; auto out_idx = out_s.index(idx); for(auto ii = 0; ii < in_lens.size(); ++ii) { auto idx_val = idx_op(in_lens[ii], out_lens[ii], idx[ii], vec_scale[ii]); vvv_ind[ii][0][out_idx] = nearest_floor(in_lens[ii], idx_val); vvv_ind[ii][1][out_idx] = nearest_ceil(in_lens[ii], idx_val); delta[ii][out_idx] = idx_val - vvv_ind[ii][0][out_idx]; } }); std::vector> vec_dims(out_elements); auto ind = calc_neighbor_points(vvv_ind, 0, vec_dims, in_s); auto ind_lens = out_lens; ind_lens[0] *= (std::size_t{1} << n_dim); shape ind_s{shape::int32_type, ind_lens}; auto ins_ind = info.add_literal(literal(ind_s, ind)); auto data = info.add_instruction(make_op("gather", {{"axis", 0}}), rsp, ins_ind); auto dim_lens = out_lens; dim_lens[0] *= (std::size_t{1} << (n_dim - 1)); for(std::size_t i = 0; i < n_dim; ++i) { shape dim_s{shape::float_type, dim_lens}; const auto& dim_delta = delta[n_dim - i - 1]; std::vector delta_data; for(std::size_t j = 0; j < dim_lens[0] / out_lens[0]; ++j) { delta_data.insert(delta_data.begin(), dim_delta.begin(), dim_delta.end()); } auto ins_delta = info.add_literal(dim_s, delta_data); // slice the data int64_t slc_stride = static_cast(dim_lens[0]); auto low = info.add_instruction( make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {slc_stride}}}), data); auto hi = info.add_instruction( make_op("slice", {{"axes", {0}}, {"starts", {slc_stride}}, {"ends", {2 * slc_stride}}}), data); auto diff = info.add_instruction(make_op("sub"), hi, low); auto ddf = info.add_instruction(make_op("mul"), diff, ins_delta); data = info.add_instruction(make_op("add"), ddf, low); dim_lens[0] /= 2; } return data; } } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx