import numpy import onnxruntime as rt sess = rt.InferenceSession("dm_nfnet_f0.onnx") input_name = sess.get_inputs()[0].name print("input name", input_name) input_shape = sess.get_inputs()[0].shape print("input shape", input_shape) input_type = sess.get_inputs()[0].type print("input type", input_type) output_name = sess.get_outputs()[0].name print("output name", output_name) output_shape = sess.get_outputs()[0].shape print("output shape", output_shape) output_type = sess.get_outputs()[0].type print("output type", output_type) x = numpy.random.random((1, 3, 192, 192)) x = x.astype(numpy.float32) import migraphx model = migraphx.parse_onnx("dm_nfnet_f0.onnx") model.compile(migraphx.get_target("gpu")) print(model.get_parameter_names()) print(model.get_parameter_shapes()) print(model.get_output_shapes()) result_migraphx = model.run({"inputs": x}) result_ort = sess.run([output_name], {input_name: x}) result_migraphx = result_migraphx[0].tolist() for i in range(10): x = numpy.random.random((1, 3, 192, 192)) x = x.astype(numpy.float32) result_migraphx = model.run({"inputs": x}) result_ort = sess.run([output_name], {input_name: x}) try: numpy.testing.assert_allclose(result_migraphx[0].tolist(), result_ort[0][0], rtol=1e-02) print(f"Test #{i} completed.") except AssertionError as e: print(e)