##################################################################################### # The MIT License (MIT) # # Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ##################################################################################### import sys import migraphx try: import numpy as np except: sys.exit() def test_conv_relu(): p = migraphx.parse_onnx("conv_relu_maxpool_test.onnx") print(p) print("Compiling ...") # set offload_copy, fast_match and exhaustive_tune to true p.compile(migraphx.get_target("gpu"), True, True, True) print(p) params = {} for key, value in p.get_parameter_shapes().items(): print("Parameter {} -> {}".format(key, value)) params[key] = migraphx.generate_argument(value) r = p.run(params) print(r) def test_sub_uint64(): p = migraphx.parse_onnx("implicit_sub_bcast_test.onnx") print(p) print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) params = {} shapes = p.get_parameter_shapes() params["0"] = np.arange(120).reshape(shapes["0"].lens()).astype(np.uint64) params["1"] = np.arange(20).reshape(shapes["1"].lens()).astype(np.uint64) r = p.run(params) print(r) def test_neg_int64(): p = migraphx.parse_onnx("neg_test.onnx") print(p) print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) params = {} shapes = p.get_parameter_shapes() params["0"] = np.arange(6).reshape(shapes["0"].lens()).astype(np.int64) r = p.run(params) print(r) def test_nonzero(): p = migraphx.parse_onnx("nonzero_dynamic_test.onnx") print(p) print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) params = {} shapes = p.get_parameter_shapes() params["data"] = np.array([1, 1, 0, 1]).reshape(shapes["data"].lens()).astype(bool) r = p.run(params) print(r) def test_fp16_imagescaler(): p = migraphx.parse_onnx("imagescaler_half_test.onnx") print(p) s1 = p.get_output_shapes()[-1] print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) s2 = p.get_output_shapes()[-1] assert s1 == s2 params = {} shapes = p.get_parameter_shapes() params["0"] = np.random.randn(768).reshape(shapes["0"].lens()).astype( np.float16) r = p.run(params)[-1] print(r) def test_if_pl(): p = migraphx.parse_onnx("if_pl_test.onnx") print(p) s1 = p.get_output_shapes()[-1] print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) s2 = p.get_output_shapes()[-1] assert s1 == s2 params = {} shapes = p.get_parameter_shapes() params["x"] = np.ones(6).reshape(shapes["x"].lens()).astype(np.float32) params["y"] = np.array([2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 ]).reshape(shapes["y"].lens()).astype(np.float32) params["cond"] = np.array([1]).reshape(()).astype(bool) r = p.run(params)[-1] print(r) def test_dyn_batch(): a = migraphx.shape.dynamic_dimension(1, 4, {2, 4}) b = migraphx.shape.dynamic_dimension(3, 3) c = migraphx.shape.dynamic_dimension(32, 32) dd_map = {"0": [a, b, c, c]} p = migraphx.parse_onnx("conv_relu_maxpool_test.onnx", map_dyn_input_dims=dd_map) print(p) print("Compiling ...") p.compile(migraphx.get_target("gpu")) print(p) def run_prog(batch_size): params = {} for key, value in p.get_parameter_shapes().items(): # convert to a static shape if value.dynamic(): dds = value.dyn_dims() new_lens = [] for dd in dds: if dd.is_fixed(): new_lens.append(dd.min) else: new_lens.append(batch_size) s = migraphx.shape(type=value.type_string(), lens=new_lens) else: s = value print("Parameter {} -> {}".format(key, s)) params[key] = migraphx.generate_argument(s) r = p.run(params) print(r) run_prog(1) run_prog(2) run_prog(3) run_prog(4) test_conv_relu() test_sub_uint64() test_neg_int64() test_fp16_imagescaler() test_if_pl() test_nonzero() test_dyn_batch()