/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_mean : op_parser { std::set float_types = {shape::float_type, shape::half_type, shape::double_type}; std::vector operators() const { return {{"Mean"}}; } /// Calculates the element-wise mean of n>=1 input tensors instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, const onnx_parser::node_info& info, std::vector args) const { auto num_data = args.size(); if(num_data == 1) return args[0]; auto divisor = info.add_literal( migraphx::literal{migraphx::shape{args[0]->get_shape().type()}, {num_data}}); if(contains(float_types, args[0]->get_shape().type())) { return std::accumulate(args.begin() + 1, args.end(), info.add_broadcastable_binary_op("div", args[0], divisor), [&](auto mean, auto data_i) { // Pre-divide each tensor element-wise by n to reduce risk of // overflow during summation auto div = info.add_broadcastable_binary_op("div", data_i, divisor); return info.add_broadcastable_binary_op("add", mean, div); }); } else { // Compute sum before division for integral types auto sum = std::accumulate( args.begin() + 1, args.end(), args[0], [&](auto accum, auto data_i) { return info.add_broadcastable_binary_op("add", accum, data_i); }); return info.add_broadcastable_binary_op("div", sum, divisor); } } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx