#include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void rewrite_batchnorm::apply(program& p) const { for(auto ins : iterator_for(p)) { if(ins->name() != "batch_norm_inference") continue; // Get scale, bias, mean, variance from inputs auto gamma = ins->inputs()[1]->eval(); auto bias = ins->inputs()[2]->eval(); auto mean = ins->inputs()[3]->eval(); auto variance = ins->inputs()[4]->eval(); if(any_of({gamma, bias, mean, variance}, [](auto arg) { return arg.empty(); })) continue; auto s = shape{ins->get_shape().type(), {ins->get_shape().lens()[1]}}; // Get epsilon auto bn_op = any_cast(ins->get_operator()); auto epsilon = bn_op.epsilon; argument a{s}; argument b{s}; visit_all(gamma, bias, mean, variance, a, b)( [&](auto gamma2, auto bias2, auto mean2, auto variance2, auto a2, auto b2) { dfor(a.get_shape().elements())( [&](std::size_t c) { a2[c] = gamma2[c] / std::sqrt(variance2[c] + epsilon); }); dfor(b.get_shape().elements())([&](std::size_t c) { b2[c] = bias2[c] - (gamma2[c] * mean2[c] / std::sqrt(variance2[c] + epsilon)); }); }); auto broadcast = op::broadcast{1, ins->get_shape().lens()}; auto a_ins = p.add_literal({a.get_shape(), a.data()}); auto a_broadcast = p.insert_instruction(ins, broadcast, a_ins); auto mul = p.insert_instruction(ins, op::mul{}, ins->inputs().front(), a_broadcast); auto b_ins = p.add_literal({b.get_shape(), b.data()}); auto b_broadcast = p.insert_instruction(ins, broadcast, b_ins); auto add = p.insert_instruction(ins, op::add{}, mul, b_broadcast); p.replace_instruction(ins, add); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx