/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_convolution : op_parser { std::vector operators() const { return {{"Conv", "convolution"}, {"ConvInteger", "quant_convolution"}}; } instruction_ref parse(const op_desc& opd, const onnx_parser& parser, onnx_parser::node_info info, std::vector args) const { auto op = make_op(opd.op_name); auto values = op.to_value(); auto l0 = args[0]; auto weights = args[1]; auto l0_shape = l0->get_shape(); auto w_shape = weights->get_shape(); auto in_lens = l0_shape.max_lens(); assert(in_lens.size() > 2); auto kdims = in_lens.size() - 2; // ensure pads available only when auto_pad is "NOT_SET" check_padding_mode(info, "CONV"); if(contains(info.attributes, "strides")) { values["stride"].clear(); copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"])); check_attr_sizes(kdims, values["stride"].size(), "PARSE_CONV: inconsistent strides"); } if(contains(info.attributes, "dilations")) { values["dilation"].clear(); copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilation"])); check_attr_sizes( kdims, values["dilation"].size(), "PARSE_CONV: inconsistent dilations"); } std::vector padding; if(contains(info.attributes, "pads")) { values["padding"].clear(); copy(info.attributes["pads"].ints(), std::back_inserter(padding)); check_attr_sizes(kdims, padding.size() / 2, "PARSE_CONV: inconsistent paddings"); } if(contains(info.attributes, "auto_pad")) { bool is_same_padding = false; auto auto_pad = info.attributes["auto_pad"].s(); if(auto_pad.find("SAME") != std::string::npos) { is_same_padding = true; } // check if image shape is dynamic bool image_shape_dynamic = false; if(l0_shape.dynamic()) { auto dyn_dims = l0_shape.dyn_dims(); std::for_each(dyn_dims.begin() + 2, dyn_dims.end(), [&](auto dyn_dim) { if(not dyn_dim.is_fixed()) { image_shape_dynamic = true; } }); } // check if kernel shape is dynamic bool kernel_shape_dynamic = false; if(w_shape.dynamic()) { auto dyn_dims = w_shape.dyn_dims(); std::for_each(dyn_dims.begin() + 2, dyn_dims.end(), [&](auto dyn_dim) { if(not dyn_dim.is_fixed()) { kernel_shape_dynamic = true; } }); } if(is_same_padding) { if(image_shape_dynamic or kernel_shape_dynamic) { // must calculate "same" padding with input shape data bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos); values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper) : to_value(op::padding_mode_t::same_lower); values["use_dynamic_same_auto_pad"] = true; } else { values["padding_mode"] = to_value(op::padding_mode_t::same); // kernel shape will be fixed, so max_lens() == min_len() for kernel lengths auto weight_lens = weights->get_shape().max_lens(); std::vector k_lens(weight_lens.begin() + 2, weight_lens.end()); cal_auto_padding_size(info, values, k_lens, values["dilation"].to_vector(), in_lens, padding); } } } values["padding"] = std::vector(padding.begin(), padding.end()); if(contains(info.attributes, "group")) { values["group"] = parser.parse_value(info.attributes.at("group")).at(); } recalc_conv_attributes(values, kdims); op.from_value(values); auto l1 = info.add_instruction(op, l0, args[1]); return info.add_bias(args, l1, 1); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx