/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace cpu { struct dnnl_convolution : dnnl_extend_op { std::vector arg_map(int) const { return {MIGRAPHX_DNNL_PREFIX(ARG_SRC), MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)}; } shape adjust_shape(const shape& x, int i) const { auto s = base_adjust_shape(x); if(i == 1 and op.group > 1) { // TODO: Add support for transposed weights if(not s.standard()) MIGRAPHX_THROW("Weights for grouped convolution must be standard"); auto lens = s.lens(); lens.insert(lens.begin(), op.group); lens.at(1) /= op.group; return shape{s.type(), lens}; } return s; } dnnl::convolution_forward::desc get_desc(const std::unordered_map& m) const { // In DNNL dilation is zero-based auto dilation = op.dilation; std::transform( dilation.begin(), dilation.end(), dilation.begin(), [](auto x) { return x - 1; }); auto kdims = op.kdims(); std::vector padding_l(op.padding.begin(), op.padding.begin() + kdims); std::vector padding_r(op.padding.begin() + kdims, op.padding.end()); return {dnnl::prop_kind::forward_inference, dnnl::algorithm::convolution_auto, m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)), m.at(MIGRAPHX_DNNL_PREFIX(ARG_WEIGHTS)), m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)), to_dnnl_dims(op.stride), to_dnnl_dims(dilation), to_dnnl_dims(padding_l), to_dnnl_dims(padding_r)}; } }; } // namespace cpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx