/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // TEST_CASE(gpu_target_copy) //{ // migraphx::target gpu_t = migraphx::make_target("gpu"); // migraphx::target ref_t = migraphx::make_target("ref"); // migraphx::shape s{migraphx::shape::int8_type, {2, 3, 4, 5}}; // // auto ref_arg_orig = migraphx::generate_argument(s, 0x123456L); // auto gpu_arg = gpu_t.copy_to(ref_arg_orig); // auto ref_arg_final = gpu_t.copy_from(gpu_arg); // // std::vector val_orig; // ref_arg_orig.visit([&](auto v) { val_orig.assign(v.begin(), v.end()); }); // std::vector val_final; // ref_arg_final.visit([&](auto v) { val_final.assign(v.begin(), v.end()); }); // // EXPECT(migraphx::verify_range(val_orig, val_final)); //} // TEST_CASE(int8_quantization) //{ // auto run_prog = [](migraphx::program p, // const migraphx::target& t, // migraphx::parameter_map& m_in, // std::vector& res) { // std::vector cali_data; // cali_data.push_back(m_in); // migraphx::quantize_int8(p, t, cali_data); // p.compile(t); // migraphx::parameter_map m; // for(auto&& x : p.get_parameter_shapes()) // { // if(m_in.count(x.first) > 0) // { // m[x.first] = t.copy_to(m_in[x.first]); // } // else // { // m[x.first] = t.allocate(x.second); // } // } // // auto result = t.copy_from(p.eval(m).back()); // result.visit([&](auto v) { res.assign(v.begin(), v.end()); }); // }; // // auto create_program = [] { // migraphx::program p; // auto* mm = p.get_main_module(); // migraphx::shape sa{migraphx::shape::float_type, {5, 16}}; // migraphx::shape sb{migraphx::shape::float_type, {16, 8}}; // migraphx::shape sc{migraphx::shape::float_type, {5, 8}}; // auto pa = mm->add_parameter("a", sa); // auto pb = mm->add_parameter("b", sb); // mm->add_instruction(migraphx::op::dot{}, pa, pb); // // return p; // }; // // { // auto p = create_program(); // migraphx::parameter_map m; // migraphx::shape sa{migraphx::shape::float_type, {5, 16}}; // migraphx::shape sb{migraphx::shape::float_type, {16, 8}}; // migraphx::shape sc{migraphx::shape::float_type, {5, 8}}; // m["a"] = migraphx::generate_argument(sa); // m["b"] = migraphx::generate_argument(sb); // std::vector ref_result; // migraphx::target ref_t = migraphx::make_target("ref"); // run_prog(p, ref_t, m, ref_result); // // print ref_result // std::cout << "ref_result: "; // for(auto&& v : ref_result) // std::cout << v << " "; // std::cout << std::endl; // // std::vector gpu_result; // migraphx::target gpu_t = migraphx::make_target("gpu"); // run_prog(p, gpu_t, m, gpu_result); // std::cout << "gpu_result: "; // for(auto&& v : gpu_result) // std::cout << v << " "; // std::cout << std::endl; // // // Note: the tolerance for mlir_enabled result is temporarily bumped // // higher because the lowering pipeline between mlir fallback and // // regular non-mlir pipeline diverged. MLIR fallback uses the // // rewrite_quantization at the very end of the pipeline, whereas // // the regular pipeline uses the rewrite_quantization in the much // // earlier stage. // //if(migraphx::gpu::mlir_enabled()) // // EXPECT(migraphx::verify_range(ref_result, gpu_result, 1e5)); // //else // EXPECT(migraphx::verify_range(ref_result, gpu_result)); // } //} TEST_CASE(int8_quantization_bug) { auto run_prog = [](migraphx::program p, const migraphx::target& t, migraphx::parameter_map& m_in, std::vector& res) { std::vector cali_data; cali_data.push_back(m_in); // migraphx::quantize_int8(p, t, cali_data); p.compile(t); migraphx::parameter_map m; for(auto&& x : p.get_parameter_shapes()) { if(m_in.count(x.first) > 0) { m[x.first] = t.copy_to(m_in[x.first]); } else { m[x.first] = t.allocate(x.second); } } auto result = t.copy_from(p.eval(m).back()); result.visit([&](auto v) { res.assign(v.begin(), v.end()); }); }; auto create_program = [] { migraphx::program p; auto* mm = p.get_main_module(); migraphx::shape sa{migraphx::shape::float_type, {5, 16}}; migraphx::shape sb{migraphx::shape::float_type, {16, 8}}; migraphx::shape sc{migraphx::shape::float_type, {5, 8}}; auto pa = mm->add_parameter("a", sa); auto pb = mm->add_parameter("b", sb); // quantizelinear for arg0 migraphx::shape ss1{migraphx::shape::int8_type, {5, 16}}; auto literal1 = mm->add_literal(0.00738189f); auto bcast1 = mm->add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", ss1.lens()}}), literal1); auto quant_linear1 = mm->add_instruction(migraphx::make_op("quantizelinear"), pa, bcast1); // quantizelinear for arg1 migraphx::shape ss2{migraphx::shape::int8_type, {16, 8}}; auto literal2 = mm->add_literal(0.00787402f); auto bcast2 = mm->add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", ss2.lens()}}), literal2); auto quant_linear2 = mm->add_instruction(migraphx::make_op("quantizelinear"), pb, bcast2); auto dot = mm->add_instruction(migraphx::op::quant_dot{}, quant_linear1, quant_linear2); migraphx::shape ss{migraphx::shape::float_type, {5, 8}}; auto literal = mm->add_literal(5.81251188e-05f); auto bcast = mm->add_instruction( migraphx::make_op("multibroadcast", {{"out_lens", ss.lens()}}), literal); auto dequant = mm->add_instruction(migraphx::make_op("dequantizelinear"), dot, bcast); mm->add_return({dequant}); return p; }; { auto p = create_program(); migraphx::parameter_map m; migraphx::shape sa{migraphx::shape::float_type, {5, 16}}; migraphx::shape sb{migraphx::shape::float_type, {16, 8}}; migraphx::shape sc{migraphx::shape::float_type, {5, 8}}; m["a"] = migraphx::generate_argument(sa); m["b"] = migraphx::generate_argument(sb); std::vector ref_result; migraphx::target ref_t = migraphx::make_target("ref"); run_prog(p, ref_t, m, ref_result); // print ref_result std::cout << "ref_result: "; for(auto&& v : ref_result) std::cout << v << " "; std::cout << std::endl; std::vector gpu_result; migraphx::target gpu_t = migraphx::make_target("gpu"); run_prog(p, gpu_t, m, gpu_result); std::cout << "gpu_result: "; for(auto&& v : gpu_result) std::cout << v << " "; std::cout << std::endl; EXPECT(migraphx::verify_range(ref_result, gpu_result)); } } int main(int argc, const char* argv[]) { test::run(argc, argv); }