#include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { namespace device { void logsoftmax(hipStream_t stream, const argument& result, const argument& arg, int axis) { auto lens = result.get_shape().lens(); auto n_dims = lens[axis]; auto batch_lens = lens; batch_lens[axis] = 1; migraphx::shape batch_shape{result.get_shape().type(), batch_lens}; visit_all(result, arg)([&](auto output, auto input) { const auto* input_ptr = device_cast(input.data()); auto* output_ptr = device_cast(output.data()); visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) { hip_tensor_descriptor desc_batch(batch_shape); hip_tensor_descriptor desc_data(result.get_shape()); // use one block for items in one batch. // opt 1, load all data to lds then use the same approach as // the current optimization const size_t max_block_size = 1024; size_t block_size = 1; while(block_size < max_block_size and block_size < n_dim) { block_size *= 2; } launch( stream, batch_shape.elements() * block_size, block_size)([=](auto idx) __device__ { size_t thr_idx = idx.local; size_t blk_idx = idx.group; using type = device_type>; // all data can be loaded to the lds once, so all operations are // done in lds MIGRAPHX_DEVICE_SHARED type lds_data[max_block_size + 2]; auto batch_idx = desc_batch.multi(blk_idx); auto data_idx = batch_idx; // load data to lds and compute the batch max size_t item_num = n_dims; size_t thread_num = (n_dims + block_size - 1) / block_size * block_size; lds_data[block_size] = input_ptr[0]; for(size_t i = thr_idx; i < thread_num; i += block_size) { if(i < n_dims) { data_idx[axis] = i; lds_data[thr_idx] = input_ptr[desc_data.linear(data_idx)]; } __syncthreads(); auto size = (item_num > block_size) ? block_size : item_num; auto stride = (size + 1) / 2; while(true) { if(thr_idx + stride < size) { lds_data[thr_idx] = ::max(to_hip_type(lds_data[thr_idx]), to_hip_type(lds_data[thr_idx + stride])); } __syncthreads(); size = stride; stride = (stride + 1) / 2; if(size == 1) break; } if(thr_idx == 0) { lds_data[block_size] = (lds_data[0] < lds_data[block_size]) ? lds_data[block_size] : lds_data[0]; } __syncthreads(); item_num -= block_size; } const size_t block_size1 = block_size + 1; lds_data[block_size1] = 0; item_num = n_dims; for(size_t i = thr_idx; i < thread_num; i += block_size) { if(i < n_dims) { data_idx[axis] = i; lds_data[thr_idx] = input_ptr[desc_data.linear(data_idx)] - lds_data[block_size]; lds_data[thr_idx] = ::exp(to_hip_type(lds_data[thr_idx])); } __syncthreads(); auto size = (item_num > block_size) ? block_size : item_num; auto stride = (size + 1) / 2; while(true) { if(thr_idx + stride < size) { lds_data[thr_idx] += lds_data[thr_idx + stride]; } __syncthreads(); size = stride; stride = (stride + 1) / 2; if(size == 1) break; } if(thr_idx == 0) { lds_data[block_size1] += lds_data[0]; } __syncthreads(); item_num -= block_size; } auto log_batch_sum = ::log(to_hip_type(lds_data[block_size1])) + lds_data[block_size]; for(size_t i = thr_idx; i < n_dims; i += block_size) { data_idx[axis] = i; size_t index = desc_data.linear(data_idx); output_ptr[index] = input_ptr[index] - log_batch_sum; } }); }); }); } } // namespace device } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx