/* * The MIT License (MIT) * * Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void calculate_padding(int64_t idx, std::vector& pads, int64_t input_dim, int64_t stride, int64_t dilation, int64_t weight_dim, bool is_same_upper) { int64_t output_dim = (input_dim + stride - 1) / stride; // round up result int64_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1); int64_t pad = std::max(static_cast(0), (output_dim - 1) * stride + new_weight_dim - input_dim); auto pad_ndims = pads.size() / 2; if(is_same_upper) { pads[idx] = pad / 2; pads[idx + pad_ndims] = pad - pad / 2; } else { pads[idx + pad_ndims] = pad / 2; pads[idx] = pad - pad / 2; } } std::vector calc_dyn_auto_pad(const std::vector& input_lens, const std::vector& wei_lens, const std::vector& strides, const std::vector& dilations, bool use_upper) { std::vector padding; assert(input_lens.size() >= 3); std::size_t num_spatial_dims = input_lens.size() - 2; padding.resize(2 * num_spatial_dims); for(std::size_t i = 0; i < num_spatial_dims; i++) { std::ptrdiff_t input_dim = input_lens[i + 2]; std::ptrdiff_t stride = strides[i]; std::ptrdiff_t weight_dim = wei_lens[i + 2]; std::ptrdiff_t dilation = dilations[i]; std::ptrdiff_t output_dim = (input_dim + stride - 1) / stride; // round up result std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1); std::size_t pad = std::max(static_cast(0), (output_dim - 1) * stride + new_weight_dim - input_dim); auto pad_ndims = padding.size() / 2; if(use_upper) { padding[i] = pad / 2; padding[i + pad_ndims] = pad - pad / 2; } else { padding[i + pad_ndims] = pad / 2; padding[i] = pad - pad / 2; } } return padding; } shape compute_padded_shape(const shape& input, const shape& weights, const std::vector& padding, const std::vector& stride, const std::vector& dilation) { const size_t num_spatial_dims = input.lens().size() - 2; std::vector output_lens{input.lens()[0], weights.lens()[0]}; // calculate the output shape of the convolution: ((W - K + 2P) / S) + 1 for(size_t i = 0; i < num_spatial_dims; ++i) { auto padding_factor = padding[i] + padding[i + num_spatial_dims]; output_lens.push_back(std::size_t(std::max( 1, (input.lens()[i + 2] - (1 + dilation[i] * (weights.lens()[i + 2] - 1)) + padding_factor) / stride[i] + 1))); } return input.with_lens(output_lens); } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx