#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { instruction_ref insert_quant_ins(program& prog, instruction_ref& ins, shape::type_t type, std::unordered_map& map_ins, float scale = 1.0f, float shift = 0.0f) { if(map_ins.count(ins) > 0) { return map_ins[ins]; } if(ins->name() == "undefined") { return ins; } assert(ins->get_shape().type() == shape::float_type || ins->get_shape().type() == shape::double_type || ins->get_shape().type() == shape::int32_type); instruction_ref quant_ins{}; quant_ins = prog.insert_instruction(std::next(ins), op::convert{type, scale, shift}, ins); map_ins[ins] = quant_ins; return quant_ins; } // This function is to convert any instructions specified in the input // from double or float to float16 by inserting a convert operator. // For the conversion, there could be cases of overflowing, but it // is very rare in the area of deeping learning, so we just do a // truncate of the input to get the fp16. void quantize(program& prog, const std::vector& ins_names) { std::unordered_map map_fp16; for(auto ins : iterator_for(prog)) { // all indicates every instruction is converted if((not contains(ins_names, "all")) and (not contains(ins_names, ins->name()))) { continue; } shape::type_t orig_type = ins->get_shape().type(); // process all inputs, if input is a fp32 or fp64, convert it // to a fp16 by adding a convert operator. auto inputs = ins->inputs(); std::vector converted_inputs; for(auto input : inputs) { auto s = input->get_shape(); if(s.type() == shape::float_type || s.type() == shape::double_type) { // if the input is a convert operator, uses its input // as its current input instruction_ref input_fp16{}; if(input->name() == "convert") { input_fp16 = input->inputs().front(); } else { input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16); } converted_inputs.push_back(input_fp16); } else { converted_inputs.push_back(input); } } // no change for the input, go to the next instruction if(inputs == converted_inputs) { continue; } auto op = ins->get_operator(); auto ins_shape = compute_shape(op, converted_inputs); if(ins_shape.type() != orig_type) { // check the dead code case to avoid assert bool output_empty = ins->outputs().empty(); auto ins_orig_type = prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins); if(!output_empty) { prog.replace_instruction(ins, ins_orig_type); } } prog.replace_instruction(ins, op, converted_inputs); } } void quantize(program& prog) { quantize(prog, {"all"}); } // int8 quantization is different from fp16 since int8 can only handle value // -128 ~ 127. To convert the float or double to int8, we need a scale and // a shift, then the convert can be done as v_int8 = fp * scale + shift. // To simplify the changes, we consider shift as 0.0f for now. void quantize_int8(program& prog, const std::vector& ins_names, std::vector>& int8_quant_params) { // // For debugging // auto print_gemm_res = [&](std::size_t ins_index, std::vector args) { // // scale and shift is need for only int8 type, and we do not // // consider shift, so set shift to 0 // std::vector vec_val; // args.front().visit([&](auto output) { vec_val.assign(output.begin(), output.end()); }); // std::cout << "quant_gemm = " << std::endl; // for (size_t i = 0; i < 20; i++) // { // std::cout << vec_val[i] << "\t"; // } // std::cout << std::endl; // }; // // For debugging // auto print_conv_res = [&](std::size_t ins_index, std::vector args) { // // scale and shift is need for only int8 type, and we do not // // consider shift, so set shift to 0 // std::vector vec_val; // args.front().visit([&](auto output) { vec_val.assign(output.begin(), output.end()); }); // std::cout << "quant_conv = " << std::endl; // for (size_t i = 0; i < 20; i++) // { // std::cout << vec_val[i] << "\t"; // } // std::cout << std::endl; // }; // For now, we only support the int8 quantization of gemm and convolution std::vector op_names = {"dot", "convolution"}; if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) { return (std::find(op_names.begin(), op_names.end(), name) != op_names.end()); })) { MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation"); } std::size_t quant_param_index = 0; std::unordered_map map_quant_ins; for(auto ins : iterator_for(prog)) { if(not contains(ins_names, ins->name())) { continue; } shape::type_t orig_type = ins->get_shape().type(); // for the dot operator, there could be 2 or 3 input arguments // if the 3rd argument is available, convert it to an int32. std::vector converted_inputs; // process all inputs, if input is a fp32 or fp64, convert it // to a int8 type by adding a convert operator and replace // the operator with the corresponding int8 version auto inputs = ins->inputs(); std::vector> ins_quant_params; for(auto input : inputs) { // In general, the target_type is int8, but for the dot // operation, if it has 3 inputs, then the last one should // be converted to int32_type shape::type_t quant_type = shape::int8_type; auto param = int8_quant_params[quant_param_index++]; ins_quant_params.push_back(param); if(ins->name() == "dot" and inputs.size() == 3 and input == inputs.back()) { quant_type = shape::int32_type; } auto s = input->get_shape(); if((s.type() == shape::float_type || s.type() == shape::double_type || s.type() == shape::int32_type) && s.type() != quant_type) { // if the input is a convert operator, uses its input // as its current input instruction_ref quant_input{}; if(input->name() == "convert") { auto tmp_ins = input->inputs().front(); if(tmp_ins->get_shape().type() == quant_type) { quant_input = input->inputs().front(); } else { quant_input = insert_quant_ins( prog, input, quant_type, map_quant_ins, param.first, param.second); } } else { quant_input = insert_quant_ins( prog, input, quant_type, map_quant_ins, param.first, param.second); } converted_inputs.push_back(quant_input); } else { converted_inputs.push_back(input); } } // no change for the input, go to the next instruction if(inputs == converted_inputs) { continue; } // When converting from other types to int8_type, there are parameters // used as scale and shift(.0f), which will generate results diffrent from // the original results. To adjust the output to be "correct(approximatly // equal)", we need additional calculation for the adjustment if(ins->name() == "dot") { auto dot_op = any_cast(ins->get_operator()); float new_alpha = dot_op.alpha / (ins_quant_params[0].first * ins_quant_params[1].first); float new_beta = dot_op.beta; // We need additional checking about the quant_alpha value. If // abs(quant_alpha) > 50 (some tmp value set here), we can convert // it to an integer as the new_alpha in the quant_dot float threshold = 50.0f; if(fabs(new_alpha) >= threshold && fabs(new_beta) >= threshold) { int32_t quant_alpha = static_cast(new_alpha); int32_t quant_beta = static_cast(new_beta); shape quant_shape = compute_shape(op::quant_dot{1, 0}, converted_inputs); if(quant_shape.type() == orig_type) { prog.replace_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); } else { auto quant_dot = prog.insert_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); prog.replace_instruction(ins, op::convert{orig_type}, quant_dot); } } // only alpha can be quantized, quantization of beta will cause // big error, so we have to manually do the multiplication and // addition else if(fabs(new_alpha) >= threshold) { int32_t quant_alpha = static_cast(new_alpha); int32_t quant_beta = 0; if(orig_type == shape::int32_type) { if(inputs.size() == 2 or dot_op.beta == 0.0f) { prog.replace_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); } // if there are 3 inputs, we need to consider the third argument else { auto q_dot = prog.insert_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); std::vector vec_beta(q_dot->get_shape().elements(), dot_op.beta); auto l_beta = prog.add_literal(literal{orig_type, vec_beta}); auto beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back()); prog.replace_instruction(ins, op::add{}, q_dot, beta_c); } } else { if(inputs.size() == 2 or dot_op.beta == 0.0f) { auto q_dot = prog.insert_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); prog.replace_instruction(ins, op::convert{orig_type}, q_dot); } // if there are 3 inputs, we need to consider the third argument else { auto q_dot = prog.insert_instruction( ins, op::quant_dot{quant_alpha, quant_beta}, converted_inputs); auto oq_dot = prog.insert_instruction(ins, op::convert{orig_type}, q_dot); std::vector vec_beta(q_dot->get_shape().elements(), dot_op.beta); auto l_beta = prog.add_literal(literal{oq_dot->get_shape(), vec_beta}); auto beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back()); prog.replace_instruction(ins, op::add{}, q_dot, beta_c); } } } else { auto q_dot = prog.insert_instruction(ins, op::quant_dot{1, 0}, converted_inputs); std::vector vec_alpha(q_dot->get_shape().elements(), new_alpha); if(orig_type == shape::int32_type) { auto l_alpha = prog.add_literal(literal(ins->get_shape(), vec_alpha)); if(converted_inputs.size() == 2 or dot_op.beta == 0.0f) { prog.replace_instruction(ins, op::mul{}, l_alpha, q_dot); } // case of 3 arguments else { std::vector vec_beta(ins->get_shape().elements(), new_beta); auto l_beta = prog.add_literal(literal(ins->get_shape(), vec_beta)); auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, q_dot); auto beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back()); prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c); } } else { auto oq_dot = prog.insert_instruction(ins, op::convert{orig_type}, q_dot); auto l_alpha = prog.add_literal(literal(ins->get_shape(), vec_alpha)); if(converted_inputs.size() == 2 or dot_op.beta == 0.0f) { prog.replace_instruction(ins, op::mul{}, l_alpha, oq_dot); } // case of 3 arguments else { std::vector vec_beta(ins->get_shape().elements(), new_beta); auto l_beta = prog.add_literal(literal(ins->get_shape(), vec_beta)); auto alpha_ab = prog.insert_instruction(ins, op::mul{}, l_alpha, oq_dot); auto beta_c = prog.insert_instruction(ins, op::mul{}, l_beta, inputs.back()); prog.replace_instruction(ins, op::add{}, alpha_ab, beta_c); } } } } else if(ins->name() == "convolution") { // Current MIOpen convolution does not support alpha and beta, // so we need a separate multiply to adjust the output auto conv_op = any_cast(ins->get_operator()); auto padding = conv_op.padding; auto stride = conv_op.stride; auto dilation = conv_op.dilation; auto padding_mode = conv_op.padding_mode; auto group = conv_op.group; auto adjust_factor = 1.0 / (ins_quant_params[0].first * ins_quant_params[1].first); shape quant_shape = compute_shape(op::quant_convolution{padding, stride, dilation, padding_mode, group}, converted_inputs); std::vector vec_factor(quant_shape.elements(), adjust_factor); auto fl = prog.add_literal(literal{{orig_type, quant_shape.lens()}, vec_factor}); if(quant_shape.type() == orig_type) { if(adjust_factor == 1.0f) { prog.replace_instruction( ins, op::quant_convolution{padding, stride, dilation, padding_mode, group}, converted_inputs); } else { auto quant_conv = prog.insert_instruction( ins, op::quant_convolution{padding, stride, dilation, padding_mode, group}, converted_inputs); prog.replace_instruction(ins, op::mul{}, quant_conv, fl); } } else { auto quant_conv = prog.insert_instruction( ins, op::quant_convolution{padding, stride, dilation, padding_mode, group}, converted_inputs); if(adjust_factor == 1.0f) { prog.replace_instruction(ins, op::convert{orig_type}, quant_conv); } else { auto oq_conv = prog.insert_instruction(ins, op::convert{orig_type}, quant_conv); prog.replace_instruction(ins, op::mul{}, oq_conv, fl); } } } else { MIGRAPHX_THROW("INT8_QUANTIZE: does not support operator" + ins->name()); } } } // For the input of each input argument, we need to insert a // capture operator to compute the scale and shift void capture_arguments(program& prog, const std::vector& ins_names, std::size_t& num_quant_params, std::function args)> func) { num_quant_params = 0; // the int8 quantization only support dot and convolution std::vector op_names = {"dot", "convolution", "quant_dot", "quant_convolution"}; if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) { return std::find(op_names.begin(), op_names.end(), name) != op_names.end(); })) { MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported"); } std::unordered_map ins_map; for(auto ins : iterator_for(prog)) { if(not contains(ins_names, ins->name())) { continue; } auto inputs = ins->inputs(); std::vector new_args; for(auto input : inputs) { instruction_ref new_ins{}; if(ins_map.count(input) > 0) { new_ins = ins_map[input]; } else { new_ins = prog.insert_instruction( std::next(input), op::capture{num_quant_params++, func}, input); ins_map[input] = new_ins; } new_args.push_back(new_ins); } instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx