#include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace tf { struct parse_matmul : op_parser { std::vector operators() const { return {{"BatchMatMul"}, {"BatchMatMulV2"}, {"MatMul"}}; } instruction_ref parse(const op_desc& /*opd*/, const tf_parser& /*parser*/, tf_parser::node_info info, std::vector args) const { bool transa = false; bool transb = false; if(contains(info.attributes, "transpose_a")) { transa = info.attributes.at("transpose_a").b(); } if(contains(info.attributes, "transpose_b")) { transb = info.attributes.at("transpose_b").b(); } if(contains(info.attributes, "adj_x")) { transa = info.attributes.at("adj_x").b(); } if(contains(info.attributes, "adj_y")) { transb = info.attributes.at("adj_y").b(); } std::vector perm(args[0]->get_shape().lens().size()); std::iota(perm.begin(), perm.end(), int64_t{0}); // swap the last two elements std::iter_swap(perm.end() - 1, perm.end() - 2); auto l1 = (transa) ? info.add_instruction(make_op("transpose", {{"permutation", perm}}), args[0]) : args[0]; auto l2 = (transb) ? info.add_instruction(make_op("transpose", {{"permutation", perm}}), args[1]) : args[1]; return info.add_instruction(make_op("dot"), l1, l2); } }; } // namespace tf } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx