#include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace gpu { template void generic_rocblas_batched_gemm(shape::as, Ts&&... xs) { rocblas_sgemm_strided_batched(std::forward(xs)...); } template void generic_rocblas_batched_gemm(shape::as, Ts&&... xs) { rocblas_dgemm_strided_batched(std::forward(xs)...); } template void generic_rocblas_batched_gemm(shape::as, Ts&&... xs) { rocblas_hgemm_strided_batched(std::forward(xs)...); } template void generic_rocblas_batched_gemm(shape::as, Ts&&...) { MIGRAPHX_THROW("GENERIC_ROCBLAS_BATCHED_GEMM: type unsupported by rocblas"); } template void generic_rocblas_gemm(shape::as, Ts&&... xs) { rocblas_sgemm(std::forward(xs)...); } template void generic_rocblas_gemm(shape::as, Ts&&... xs) { rocblas_dgemm(std::forward(xs)...); } template void generic_rocblas_gemm(shape::as, Ts&&... xs) { rocblas_hgemm(std::forward(xs)...); } template void generic_rocblas_gemm(shape::as, Ts&&...) { MIGRAPHX_THROW("GENERIC_ROCBLAS_GEMM: type unsupported by rocblas"); } template struct compute_rocblas_type { using type = T; }; template struct compute_rocblas_type { using type = const typename compute_rocblas_type::type; }; template <> struct compute_rocblas_type { using type = rocblas_half; }; template using rb_type = typename compute_rocblas_type::type; template rb_type to_rocblas_type(T x) { return reinterpret_cast&>(x); } template rb_type* to_rocblas_type(T* x) { return reinterpret_cast*>(x); } rocblas_half to_rocblas_type(half x) { return reinterpret_cast(x); } shape miopen_gemm::compute_shape(const std::vector& inputs) const { check_shapes{inputs, *this}.has(3); return op.compute_shape({inputs.at(0), inputs.at(1)}); } argument miopen_gemm::compute(context& ctx, const shape& output_shape, const std::vector& args) const { float alpha = 1.0f; float beta = 0.0f; bool transa = args[0].get_shape().transposed(); bool transb = args[1].get_shape().transposed(); std::size_t n_dims = args[0].get_shape().lens().size(); std::size_t dim_0 = n_dims - 2; std::size_t dim_1 = n_dims - 1; rocblas_int lda = args[0].get_shape().strides()[transa ? dim_1 : dim_0]; rocblas_int ldb = args[1].get_shape().strides()[transb ? dim_1 : dim_0]; rocblas_int ldc = args[2].get_shape().strides()[dim_0]; auto out_lens = output_shape.lens(); rocblas_int m = out_lens[dim_0]; rocblas_int n = out_lens[dim_1]; rocblas_int k = args[0].get_shape().lens()[dim_1]; auto batch_num = std::accumulate( out_lens.rbegin() + 2, out_lens.rend(), std::size_t{1}, std::multiplies()); output_shape.visit_type([&](auto as) { auto alpha_r = to_rocblas_type(as(alpha)); auto beta_r = to_rocblas_type(as(beta)); auto to_pointer = [&](auto&& arg) { return to_rocblas_type(as.from(arg.data())); }; // call the strided implementation only if there are multiple matrices if (batch_num > 1) { generic_rocblas_batched_gemm(as, ctx.get_stream().get_rocblas(), transb ? rocblas_operation_transpose : rocblas_operation_none, transa ? rocblas_operation_transpose : rocblas_operation_none, n, m, k, &alpha_r, to_pointer(args[1]), ldb, k * n, to_pointer(args[0]), lda, m * k, &beta_r, to_pointer(args[2]), ldc, m * n, batch_num); } else { generic_rocblas_gemm(as, ctx.get_stream().get_rocblas(), transb ? rocblas_operation_transpose : rocblas_operation_none, transa ? rocblas_operation_transpose : rocblas_operation_none, n, m, k, &alpha_r, to_pointer(args[1]), ldb, to_pointer(args[0]), lda, &beta_r, to_pointer(args[2]), ldc); } }); return args[2]; } } // namespace gpu } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx