#include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { void fwd_conv_batchnorm_rewrite::apply(program& p) const { for(auto ins : iterator_for(p)) { if(ins->name() != "batch_norm_inference") continue; if(not std::all_of(ins->inputs().begin() + 1, ins->inputs().end(), [](auto arg) { return arg->name() == "@literal"; })) continue; auto conv_ins = ins->inputs()[0]; if(conv_ins->name() != "convolution") continue; if(conv_ins->inputs()[1]->name() != "@literal") continue; // Get scale, bias, mean, variance from instruction_ref const auto& gamma = ins->inputs()[1]->get_literal(); const auto& bias = ins->inputs()[2]->get_literal(); const auto& mean = ins->inputs()[3]->get_literal(); const auto& variance = ins->inputs()[4]->get_literal(); // Get epsilon auto bn_op = any_cast(ins->get_operator()); auto epsilon = bn_op.epsilon; // Get convolution weights const auto& weights = conv_ins->inputs()[1]->get_literal(); // Get convolution op auto conv_op = conv_ins->get_operator(); auto weights_lens = weights.get_shape().lens(); auto conv_lens = conv_ins->get_shape().lens(); argument new_weights{weights.get_shape()}; argument new_bias{bias.get_shape()}; visit_all(weights, gamma, bias, mean, variance, new_weights, new_bias)( [&](auto weights2, auto gamma2, auto bias2, auto mean2, auto variance2, auto new_weights2, auto new_bias2) { dfor(weights_lens[0], weights_lens[1], weights_lens[2], weights_lens[3])( [&](std::size_t k, std::size_t c, std::size_t h, std::size_t w) { new_weights2(k, c, h, w) = gamma2(k) / std::sqrt(variance2(k) + epsilon) * weights2(k, c, h, w); }); dfor(new_bias.get_shape().elements())([&](std::size_t c) { new_bias2(c) = bias2(c) - (gamma2(c) * mean2(c) / std::sqrt(variance2(c) + epsilon)); }); }); // Replace convolution instruction with updated weights auto l_weights = p.add_literal({weights.get_shape(), new_weights.data()}); auto l_bias = p.add_literal({new_bias.get_shape(), new_bias.data()}); auto c = p.replace_instruction(conv_ins, conv_op, {conv_ins->inputs()[0], l_weights}); auto b = p.insert_instruction(ins, op::broadcast{1, c->get_shape()}, l_bias); p.replace_instruction(ins, op::add{}, {c, b}); } } } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx