#include #include #include #include #include #include using migraphx::trim; std::string encode(std::string s) { std::stringstream ss; bool prespace = false; for(auto c:s) { if (std::isspace(c)) { if (not prespace) ss << " "; prespace = true; } else if (std::isprint(c)) { ss << c; prespace = false; } } return migraphx::trim(ss.str()); } TEST_CASE(conv) { const std::string mlir_output = R"__migraphx__( module { func @main(%arg0: tensor<1x8x4x4xf32>, %arg1: tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> { %0 = "migraphx.convolution"(%arg0, %arg1) {dilation = [1 : si64, 1 : si64], group = 1 : si64, padding = [0 : si64, 0 : si64], padding_mode = 0 : si64, stride = [1 : si64, 1 : si64]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> } } )__migraphx__"; migraphx::module m; auto x = m.add_parameter("x", {migraphx::shape::float_type, {1, 8, 4, 4}}); auto w = m.add_parameter("w", {migraphx::shape::float_type, {2, 8, 3, 3}}); m.add_instruction(migraphx::make_op("convolution"), x, w); auto s = migraphx::gpu::dump_mlir(m); EXPECT(encode(s) == encode(mlir_output)); } int main(int argc, const char* argv[]) { test::run(argc, argv); }