/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include TEST_CASE(multinomial_test) { migraphx::program p; auto* mm = p.get_main_module(); size_t sample_size = 100000; float seed = 0.0f; std::mt19937 gen(seed); std::uniform_real_distribution<> dis(0.0, 1.0); std::vector rand_samples(sample_size); std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); }); migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}}; auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples}); migraphx::shape s{migraphx::shape::float_type, {1, 5}}; std::vector dist{15, 25, 15, 25, 20}; std::vector data(5); std::vector sum(5); // convert to float std::transform(dist.begin(), dist.end(), data.begin(), [&](auto d) { return d; }); // take cumulative sum std::partial_sum(data.begin(), data.end(), sum.begin(), std::plus()); // scale probabilities arbitrarily float odd_scale = 10000.; std::transform(sum.begin(), sum.end(), data.begin(), [&](auto d) { return d * odd_scale; }); auto input = mm->add_literal(migraphx::literal(s, data)); mm->add_instruction(migraphx::make_op("multinomial"), input, rs_lit); p.compile(migraphx::make_target("ref")); auto result = p.eval({}).back(); // result_vec contains an index, or category label, for each random input value std::vector result_vec(sample_size); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // res_dist is a count, or histogram, of the number of samples in each category. This is the // sampled distribution. std::vector res_dist(5, 0); for(const auto& r : result_vec) res_dist[r]++; // To check the result, normalize the original probability distribution dist // and the sampling result res_dist; they should be close // Total the unnormalized probabilities auto dist_sum = std::accumulate(dist.begin(), dist.end(), 0); // Total the number of values returned auto res_dist_sum = std::accumulate(res_dist.begin(), res_dist.end(), 0); std::vector norm(5); std::vector res_norm(5); std::transform(dist.begin(), dist.end(), norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist.begin(), res_dist.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); } TEST_CASE(multinomial_dyn_test) { // Invokes random_uniform and multinomial ops together, to verify the interface // Dynamic Batch dimension input of 2 means there are 2 different probability // distribution functions contained in Input_2 migraphx::program p; auto* mm = p.get_main_module(); size_t sample_size = 100000; size_t batch_size = 2; // Shape of the random data migraphx::shape rs{migraphx::shape::float_type, {{1, 2}, {2, sample_size + 1}}}; auto input = mm->add_parameter("Input_1", rs); // Runtime randomization seed // To seed the random_uniform, we can provide a value by literal or input, // or ask the system to auto-seed with random_seed op. migraphx::shape seed_shape{migraphx::shape::uint32_type, {migraphx::shape::dynamic_dimension{0, 1}}}; auto seed_input = mm->add_parameter("Seed", seed_shape); // Shape of the probability distribution, which also defines the number of categories migraphx::shape s{migraphx::shape::float_type, {{2, 2}, {5, 6}}}; // Unnormalized distributions for batch size 2: // 15, 25, 15, 15, 20 // 20, 20, 10, 25, 25 std::vector dist{15, 25, 15, 25, 20, 20, 20, 10, 25, 25}; // Hard-coded non-normalized, accumulated distribution follows: std::vector data{.15f, .40f, .55f, .80f, 1.0f, 20.f, 40.f, 50.f, 75.f, 100.f}; auto input2 = mm->add_parameter("Input_2", s); auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, input); mm->add_instruction(migraphx::make_op("multinomial"), input2, randoms); p.compile(migraphx::make_target("ref")); // Create a dummy input in the shape we want for the random data std::vector dummy(sample_size, 0); migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {batch_size, sample_size}}; migraphx::shape input_fixed_shape2{migraphx::shape::float_type, {batch_size, 5}}; migraphx::parameter_map params0; params0["Input_1"] = migraphx::argument(input_fixed_shape1, dummy.data()); migraphx::shape seed_fixed_shape{migraphx::shape::uint32_type, {1}}; std::vector seed_data = {4}; params0["Seed"] = migraphx::argument(seed_fixed_shape, seed_data.data()); params0["Input_2"] = migraphx::argument(input_fixed_shape2, data.data()); auto result = p.eval(params0).back(); std::vector result_vec(input_fixed_shape2.elements()); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // Make a categorical histogram of output std::vector res_dist(5, 0); size_t r = 0; for(r = 0; r < result_vec.size() / 2; r++) res_dist[result_vec[r]]++; // histogram for second set of batch std::vector res_dist2(5, 0); for(; r < result_vec.size(); r++) res_dist2[result_vec[r]]++; // Rescale or normalize both the input probability distribution and the output // histogram, and compare. Should be close but not identical. auto dist_sum = std::accumulate(dist.begin(), dist.begin() + 5, 0); auto res_dist_sum = std::accumulate(res_dist.begin(), res_dist.end(), 0); std::vector norm(5); std::vector res_norm(5); std::transform(dist.begin(), dist.begin() + 5, norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist.begin(), res_dist.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); // Do the same rescaling for the 2nd in batch, which has a different probability distribution dist_sum = std::accumulate(dist.begin() + 5, dist.end(), 0); res_dist_sum = std::accumulate(res_dist2.begin(), res_dist2.end(), 0); std::transform(dist.begin() + 5, dist.end(), norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist2.begin(), res_dist2.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); } TEST_CASE(multinomial_float_dyn_test) { // int data type for random_uniform op and float data type for multinomial. migraphx::program p; auto* mm = p.get_main_module(); size_t sample_size = 100000; size_t batch_size = 2; // Shape of the random data migraphx::shape rs{migraphx::shape::int32_type, {{1, 2}, {2, sample_size + 1}}}; auto input = mm->add_parameter("Input_1", rs); // Runtime randomization seed // To seed the random_uniform, we can provide a value by literal or input, // or ask the system to auto-seed with random_seed op. migraphx::shape seed_shape{migraphx::shape::uint32_type, {migraphx::shape::dynamic_dimension{0, 1}}}; auto seed_input = mm->add_parameter("Seed", seed_shape); // Shape of the probability distribution, which also defines the number of categories migraphx::shape s{migraphx::shape::float_type, {{2, 2}, {5, 6}}}; // Unnormalized distributions for batch size 2: // 15, 25, 15, 15, 20 // 20, 20, 10, 25, 25 std::vector dist{15, 25, 15, 25, 20, 20, 20, 10, 25, 25}; // Hard-coded normalized, accumulated distribution follows: std::vector data{.15f, .40f, .55f, .80f, 1.0f, .20f, .40f, .50f, .75f, 1.0f}; auto input2 = mm->add_parameter("Input_2", s); auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, input); mm->add_instruction(migraphx::make_op("multinomial", {{"dtype", migraphx::shape::float_type}}), input2, randoms); p.compile(migraphx::make_target("ref")); // Create a dummy input in the shape we want for the random data std::vector dummy(sample_size, 0); migraphx::shape input_fixed_shape1{migraphx::shape::float_type, {batch_size, sample_size}}; migraphx::shape input_fixed_shape2{migraphx::shape::float_type, {batch_size, 5}}; migraphx::parameter_map params0; params0["Input_1"] = migraphx::argument(input_fixed_shape1, dummy.data()); migraphx::shape seed_fixed_shape{migraphx::shape::uint32_type, {1}}; std::vector seed_data = {4}; params0["Seed"] = migraphx::argument(seed_fixed_shape, seed_data.data()); params0["Input_2"] = migraphx::argument(input_fixed_shape2, data.data()); auto result = p.eval(params0).back(); std::vector result_vec(input_fixed_shape2.elements()); result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); }); // Make a categorical histogram of output std::vector res_dist(5, 0); size_t r = 0; for(r = 0; r < result_vec.size() / 2; r++) res_dist[result_vec[r]]++; // histogram for second set of batch std::vector res_dist2(5, 0); for(; r < result_vec.size(); r++) res_dist2[result_vec[r]]++; // Rescale or normalize both the input probability distribution and the output // histogram, and compare. Should be close but not identical. auto dist_sum = std::accumulate(dist.begin(), dist.begin() + 5, 0); auto res_dist_sum = std::accumulate(res_dist.begin(), res_dist.end(), 0); std::vector norm(5); std::vector res_norm(5); std::transform(dist.begin(), dist.begin() + 5, norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist.begin(), res_dist.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); // Do the same rescaling for the 2nd in batch, which has a different probability distribution dist_sum = std::accumulate(dist.begin() + 5, dist.end(), 0); res_dist_sum = std::accumulate(res_dist2.begin(), res_dist2.end(), 0); std::transform(dist.begin() + 5, dist.end(), norm.begin(), [&](auto n) { return static_cast(n) / dist_sum; }); std::transform(res_dist2.begin(), res_dist2.end(), res_norm.begin(), [&](auto n) { return static_cast(n) / res_dist_sum; }); EXPECT(migraphx::verify::verify_range_with_tolerance( res_norm, migraphx::verify::expected{norm}, migraphx::verify::tolerance{0.01})); }