/* * The MIT License (MIT) * * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include namespace migraphx { inline namespace MIGRAPHX_INLINE_NS { namespace onnx { struct parse_multinomial : op_parser { std::vector operators() const { return {{"Multinomial"}}; } instruction_ref parse(const op_desc& /*opd*/, const onnx_parser& /*parser*/, const onnx_parser::node_info& info, std::vector args) const { int dtype = 6; if(contains(info.attributes, "dtype")) dtype = info.attributes.at("dtype").i(); shape::type_t output_type = get_type(dtype); size_t sample_size = 1; if(contains(info.attributes, "sample_size")) sample_size = info.attributes.at("sample_size").i(); // Subtract the per-batch maximum log-probability, making the per-batch max 0 auto maxes = info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]); auto cdf = info.add_common_op("sub", args[0], maxes); // Take the element-wise exponent to get probabilities in the range (0, 1] cdf = info.add_instruction(migraphx::make_op("exp"), cdf); // Compute the cumulative density function cdf = info.add_instruction( migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); // Pre-compute random distribution std::mt19937 gen(std::chrono::high_resolution_clock::now().time_since_epoch().count()); if(contains(info.attributes, "seed")) gen.seed(info.attributes.at("seed").f()); std::uniform_real_distribution<> dis(0.0, 1.0); size_t batch_size = args[0]->get_shape().max_lens().front(); migraphx::shape dist_shape{migraphx::shape::float_type, {batch_size, sample_size}}; std::vector random_dist(batch_size * sample_size); std::generate(random_dist.begin(), random_dist.end(), [&]() { return dis(gen); }); auto dist_lit = info.add_literal(migraphx::literal{dist_shape, random_dist}); return info.add_instruction( migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, dist_lit); } }; } // namespace onnx } // namespace MIGRAPHX_INLINE_NS } // namespace migraphx