Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
fd94f579
"web/vscode:/vscode.git/clone" did not exist on "0d8f3764468999bc34700799553919ded9b34ef8"
Unverified
Commit
fd94f579
authored
Oct 18, 2022
by
Ted Themistokleous
Committed by
GitHub
Oct 18, 2022
Browse files
Merge branch 'develop' into divide_by_zero_check
parents
60fd7a8f
83784c52
Changes
57
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
234 additions
and
553 deletions
+234
-553
test/tf/batchnormv3_test.pb
test/tf/batchnormv3_test.pb
+0
-0
test/tf/gen_tf_pb.py
test/tf/gen_tf_pb.py
+40
-12
test/tf/tf_test.cpp
test/tf/tf_test.cpp
+84
-42
test/verify/quant_conv_default_mode.cpp
test/verify/quant_conv_default_mode.cpp
+1
-4
test/verify/quant_conv_int8x4_default.cpp
test/verify/quant_conv_int8x4_default.cpp
+1
-4
test/verify/quant_conv_valid_mode.cpp
test/verify/quant_conv_valid_mode.cpp
+0
-46
test/verify/test_batchnorm_1d.cpp
test/verify/test_batchnorm_1d.cpp
+0
-52
test/verify/test_batchnorm_1d_per_actv.cpp
test/verify/test_batchnorm_1d_per_actv.cpp
+0
-66
test/verify/test_batchnorm_2d_per_actv.cpp
test/verify/test_batchnorm_2d_per_actv.cpp
+0
-67
test/verify/test_batchnorm_3d.cpp
test/verify/test_batchnorm_3d.cpp
+0
-54
test/verify/test_batchnorm_3d_per_actv.cpp
test/verify/test_batchnorm_3d_per_actv.cpp
+0
-68
test/verify/test_batchnorm_inference.cpp
test/verify/test_batchnorm_inference.cpp
+0
-53
test/verify/test_batchnorm_inference_2.cpp
test/verify/test_batchnorm_inference_2.cpp
+0
-53
test/verify/test_conv_bn.cpp
test/verify/test_conv_bn.cpp
+25
-4
test/verify/test_conv_bn_add.cpp
test/verify/test_conv_bn_add.cpp
+30
-13
test/verify/test_conv_bn_relu_pooling.cpp
test/verify/test_conv_bn_relu_pooling.cpp
+22
-2
test/verify/test_conv_bn_relu_pooling2.cpp
test/verify/test_conv_bn_relu_pooling2.cpp
+31
-13
No files found.
test/tf/batchnormv3_test.pb
View file @
fd94f579
No preview for this file type
test/tf/gen_tf_pb.py
View file @
fd94f579
...
@@ -120,19 +120,45 @@ def batchnorm_test(g1):
...
@@ -120,19 +120,45 @@ def batchnorm_test(g1):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_input
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
32
),
shape
=
(
1
,
16
,
16
,
32
),
name
=
'0'
)
name
=
'x'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'1'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'scale'
)
g1_offset
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'2'
)
g1_offset
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_mean
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'3'
)
shape
=
(
32
),
name
=
'bias'
)
g1_mean
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'mean'
)
g1_variance
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_variance
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
shape
=
(
32
),
name
=
'
4
'
)
name
=
'
variance
'
)
tf
.
compat
.
v1
.
nn
.
fused_batch_norm
(
x
=
g1_input
,
tf
.
compat
.
v1
.
nn
.
fused_batch_norm
(
x
=
g1_input
,
scale
=
g1_scale
,
scale
=
g1_scale
,
offset
=
g1_offset
,
offset
=
g1_offset
,
mean
=
g1_mean
,
mean
=
g1_mean
,
variance
=
g1_variance
,
variance
=
g1_variance
,
epsilon
=
0.00001
,
epsilon
=
1e-4
,
is_training
=
False
,
name
=
'batchnorm1'
)
@
tf_test
def
batchnorm_half_test
(
g1
):
with
g1
.
as_default
():
g1_input
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float16
,
shape
=
(
1
,
16
,
16
,
32
),
name
=
'x'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'scale'
)
g1_offset
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'bias'
)
g1_mean
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'mean'
)
g1_variance
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'variance'
)
tf
.
compat
.
v1
.
nn
.
fused_batch_norm
(
x
=
g1_input
,
scale
=
g1_scale
,
offset
=
g1_offset
,
mean
=
g1_mean
,
variance
=
g1_variance
,
epsilon
=
1e-4
,
is_training
=
False
,
is_training
=
False
,
name
=
'batchnorm1'
)
name
=
'batchnorm1'
)
...
@@ -142,19 +168,21 @@ def batchnormv3_test(g1):
...
@@ -142,19 +168,21 @@ def batchnormv3_test(g1):
with
g1
.
as_default
():
with
g1
.
as_default
():
g1_input
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_input
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
1
,
16
,
16
,
32
),
shape
=
(
1
,
16
,
16
,
32
),
name
=
'0'
)
name
=
'x'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'1'
)
g1_scale
=
tf
.
constant
(
1.0
,
dtype
=
tf
.
float32
,
shape
=
[
32
],
name
=
'scale'
)
g1_offset
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'2'
)
g1_offset
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_mean
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'3'
)
shape
=
(
32
),
name
=
'bias'
)
g1_mean
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
name
=
'mean'
)
g1_variance
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
g1_variance
=
tf
.
compat
.
v1
.
placeholder
(
tf
.
float32
,
shape
=
(
32
),
shape
=
(
32
),
name
=
'
4
'
)
name
=
'
variance
'
)
tf
.
raw_ops
.
FusedBatchNormV3
(
x
=
g1_input
,
tf
.
raw_ops
.
FusedBatchNormV3
(
x
=
g1_input
,
scale
=
g1_scale
,
scale
=
g1_scale
,
offset
=
g1_offset
,
offset
=
g1_offset
,
mean
=
g1_mean
,
mean
=
g1_mean
,
variance
=
g1_variance
,
variance
=
g1_variance
,
epsilon
=
0.00001
,
epsilon
=
1e-6
,
is_training
=
False
,
is_training
=
False
,
name
=
'batchnorm1'
)
name
=
'batchnorm1'
)
...
...
test/tf/tf_test.cpp
View file @
fd94f579
...
@@ -24,6 +24,7 @@
...
@@ -24,6 +24,7 @@
#include <iostream>
#include <iostream>
#include <vector>
#include <vector>
#include <unordered_map>
#include <unordered_map>
#include <migraphx/common.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/simplify_reshapes.hpp>
...
@@ -33,7 +34,6 @@
...
@@ -33,7 +34,6 @@
#include <migraphx/instruction.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/tf.hpp>
#include <migraphx/tf.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pooling.hpp>
...
@@ -186,50 +186,94 @@ TEST_CASE(batchmatmul_test)
...
@@ -186,50 +186,94 @@ TEST_CASE(batchmatmul_test)
TEST_CASE
(
batchnorm_test
)
TEST_CASE
(
batchnorm_test
)
{
{
float
epsilon
=
1.001e-5
f
;
float
momentum
=
0.9
f
;
migraphx
::
program
p
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
op
::
batch_norm_inference
op
{
epsilon
,
momentum
,
migraphx
::
op
::
batch_norm_inference
::
spatial
};
auto
x
=
mm
->
add_parameter
(
"x"
,
{
migraphx
::
shape
::
float_type
,
{
1
,
32
,
16
,
16
}});
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
32
}};
auto
bias
=
mm
->
add_parameter
(
"bias"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
auto
l0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
32
,
16
,
16
}});
auto
mean
=
mm
->
add_parameter
(
"mean"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
std
::
vector
<
float
>
const_vals
(
32
);
auto
var
=
mm
->
add_parameter
(
"variance"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
std
::
fill
(
const_vals
.
begin
(),
const_vals
.
end
(),
1.0
f
);
std
::
vector
<
float
>
scale_data
(
32
,
1.0
);
auto
l2
=
mm
->
add_parameter
(
"2"
,
s0
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
32
}},
scale_data
);
auto
l3
=
mm
->
add_parameter
(
"3"
,
s0
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
l4
=
mm
->
add_parameter
(
"4"
,
s0
);
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-4
f
}});
auto
l1
=
mm
->
add_literal
(
migraphx
::
literal
{
s0
,
const_vals
});
mm
->
add_instruction
(
op
,
l0
,
l1
,
l2
,
l3
,
l4
);
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
var
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
prog
=
optimize_tf
(
"batchnorm_test.pb"
,
true
);
auto
prog
=
optimize_tf
(
"batchnorm_test.pb"
,
true
);
EXPECT
(
p
==
prog
);
}
TEST_CASE
(
batchnorm_half_test
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
{
migraphx
::
shape
::
half_type
,
{
1
,
32
,
16
,
16
}});
auto
bias
=
mm
->
add_parameter
(
"bias"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
auto
mean
=
mm
->
add_parameter
(
"mean"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
auto
var
=
mm
->
add_parameter
(
"variance"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
std
::
vector
<
float
>
scale_data
(
32
,
1.0
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
32
}},
scale_data
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
half_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
half_type
,
{
1e-4
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
var
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
prog
=
optimize_tf
(
"batchnorm_half_test.pb"
,
true
);
EXPECT
(
p
==
prog
);
EXPECT
(
p
==
prog
);
}
}
TEST_CASE
(
batchnormv3_test
)
TEST_CASE
(
batchnormv3_test
)
{
{
float
epsilon
=
1.0e-5
f
;
float
momentum
=
0.9
f
;
migraphx
::
program
p
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
op
::
batch_norm_inference
op
{
epsilon
,
momentum
,
migraphx
::
op
::
batch_norm_inference
::
spatial
};
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
32
}};
auto
l0
=
mm
->
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
32
,
16
,
16
}});
std
::
vector
<
float
>
const_vals
(
32
);
std
::
fill
(
const_vals
.
begin
(),
const_vals
.
end
(),
1.0
f
);
auto
l2
=
mm
->
add_parameter
(
"2"
,
s0
);
auto
l3
=
mm
->
add_parameter
(
"3"
,
s0
);
auto
l4
=
mm
->
add_parameter
(
"4"
,
s0
);
auto
l1
=
mm
->
add_literal
(
migraphx
::
literal
{
s0
,
const_vals
});
mm
->
add_instruction
(
op
,
l0
,
l1
,
l2
,
l3
,
l4
);
auto
prog
=
optimize_tf
(
"batchnormv3_test.pb"
,
true
);
auto
x
=
mm
->
add_parameter
(
"x"
,
{
migraphx
::
shape
::
float_type
,
{
1
,
32
,
16
,
16
}});
auto
bias
=
mm
->
add_parameter
(
"bias"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
auto
mean
=
mm
->
add_parameter
(
"mean"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
auto
var
=
mm
->
add_parameter
(
"variance"
,
{
migraphx
::
shape
::
float_type
,
{
32
}});
std
::
vector
<
float
>
scale_data
(
32
,
1.0
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
32
}},
scale_data
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-6
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
var
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
prog
=
optimize_tf
(
"batchnormv3_test.pb"
,
true
);
EXPECT
(
p
==
prog
);
EXPECT
(
p
==
prog
);
}
}
...
@@ -327,10 +371,9 @@ migraphx::program create_conv()
...
@@ -327,10 +371,9 @@ migraphx::program create_conv()
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
,
32
}},
weight_data
);
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
,
32
}},
weight_data
);
migraphx
::
op
::
convolution
op
;
migraphx
::
op
::
convolution
op
;
op
.
padding_mode
=
migraphx
::
op
::
padding_mode_t
::
same
;
op
.
padding
=
{
1
,
1
,
1
,
1
};
op
.
padding
=
{
1
,
1
,
1
,
1
};
op
.
stride
=
{
1
,
1
};
op
.
stride
=
{
1
,
1
};
op
.
dilation
=
{
1
,
1
};
op
.
dilation
=
{
1
,
1
};
auto
l2
=
auto
l2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
3
,
2
,
0
,
1
}}}),
l1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
3
,
2
,
0
,
1
}}}),
l1
);
mm
->
add_instruction
(
op
,
l0
,
l2
);
mm
->
add_instruction
(
op
,
l0
,
l2
);
...
@@ -406,11 +449,10 @@ TEST_CASE(depthwiseconv_test)
...
@@ -406,11 +449,10 @@ TEST_CASE(depthwiseconv_test)
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
,
1
}},
weight_data
);
mm
->
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
3
,
3
,
3
,
1
}},
weight_data
);
migraphx
::
op
::
convolution
op
;
migraphx
::
op
::
convolution
op
;
op
.
padding_mode
=
migraphx
::
op
::
padding_mode_t
::
same
;
op
.
padding
=
{
1
,
1
};
op
.
padding
=
{
1
,
1
};
op
.
stride
=
{
1
,
1
};
op
.
stride
=
{
1
,
1
};
op
.
dilation
=
{
1
,
1
};
op
.
dilation
=
{
1
,
1
};
op
.
group
=
3
;
op
.
group
=
3
;
auto
l3
=
auto
l3
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
3
,
2
,
0
,
1
}}}),
l1
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
3
,
2
,
0
,
1
}}}),
l1
);
auto
l4
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
l3
);
auto
l4
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"contiguous"
),
l3
);
...
...
test/verify/quant_conv_default_mode.cpp
View file @
fd94f579
...
@@ -37,10 +37,7 @@ struct quant_conv_default_mode : verify_program<quant_conv_default_mode>
...
@@ -37,10 +37,7 @@ struct quant_conv_default_mode : verify_program<quant_conv_default_mode>
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
,
3
}};
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}}},
pa
,
pc
);
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
same
},
pa
,
pc
);
return
p
;
return
p
;
}
}
};
};
test/verify/quant_conv_int8x4_default.cpp
View file @
fd94f579
...
@@ -37,10 +37,7 @@ struct quant_conv_int8x4_default : verify_program<quant_conv_int8x4_default>
...
@@ -37,10 +37,7 @@ struct quant_conv_int8x4_default : verify_program<quant_conv_int8x4_default>
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
16
,
16
,
3
,
3
}};
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
16
,
16
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}}},
pa
,
pc
);
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
same
},
pa
,
pc
);
return
p
;
return
p
;
}
}
};
};
test/verify/quant_conv_valid_mode.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/op/quant_convolution.hpp>
struct
quant_conv_valid_mode
:
verify_program
<
quant_conv_valid_mode
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
4
,
4
}};
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
valid
},
pa
,
pc
);
return
p
;
}
};
test/verify/test_batchnorm_1d.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_1d
:
verify_program
<
test_batchnorm_1d
>
{
const
size_t
size
=
3
;
const
size_t
channels
=
3
;
const
size_t
batches
=
4
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
size
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_1d_per_actv.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_1d_per_actv
:
verify_program
<
test_batchnorm_1d_per_actv
>
{
const
size_t
d1
=
5
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-5
},
{
"momentum"
,
0.96
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_2d_per_actv.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_2d_per_actv
:
verify_program
<
test_batchnorm_2d_per_actv
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
4
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
,
d2
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-6
},
{
"momentum"
,
0.9
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_3d.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_3d
:
verify_program
<
test_batchnorm_3d
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
2
;
const
size_t
d3
=
2
;
const
size_t
channels
=
2
;
const
size_t
batches
=
2
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
,
d3
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_3d_per_actv.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_3d_per_actv
:
verify_program
<
test_batchnorm_3d_per_actv
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
4
;
const
size_t
d3
=
5
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
,
d3
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
,
d2
,
d3
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-6
},
{
"momentum"
,
0.8
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference
:
verify_program
<
test_batchnorm_inference
>
{
const
size_t
width
=
3
;
const
size_t
height
=
3
;
const
size_t
channels
=
3
;
const
size_t
batches
=
4
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference_2.cpp
deleted
100644 → 0
View file @
60fd7a8f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference_2
:
verify_program
<
test_batchnorm_inference_2
>
{
const
size_t
width
=
14
;
const
size_t
height
=
14
;
const
size_t
channels
=
256
;
const
size_t
batches
=
1
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_conv_bn.cpp
View file @
fd94f579
...
@@ -26,6 +26,8 @@
...
@@ -26,6 +26,8 @@
#include <migraphx/program.hpp>
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn
:
verify_program
<
test_conv_bn
>
struct
test_conv_bn
:
verify_program
<
test_conv_bn
>
{
{
...
@@ -37,19 +39,38 @@ struct test_conv_bn : verify_program<test_conv_bn>
...
@@ -37,19 +39,38 @@ struct test_conv_bn : verify_program<test_conv_bn>
migraphx
::
shape
xs
{
migraphx
::
shape
::
float_type
,
{
1
,
3
,
224
,
224
}};
migraphx
::
shape
xs
{
migraphx
::
shape
::
float_type
,
{
1
,
3
,
224
,
224
}};
migraphx
::
shape
ws
{
migraphx
::
shape
::
float_type
,
{
64
,
3
,
7
,
7
}};
migraphx
::
shape
ws
{
migraphx
::
shape
::
float_type
,
{
64
,
3
,
7
,
7
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
64
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
64
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
// non-symmetrical tiling
auto
conv
=
mm
->
add_instruction
(
auto
conv
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
,
migraphx
::
make_op
(
"convolution"
,
{{
"padding"
,
{
3
,
3
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
{{
"padding"
,
{
3
,
3
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x
,
x
,
w
);
w
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
return
p
;
return
p
;
}
}
};
};
test/verify/test_conv_bn_add.cpp
View file @
fd94f579
...
@@ -26,21 +26,38 @@
...
@@ -26,21 +26,38 @@
#include <migraphx/program.hpp>
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_add
:
verify_program
<
test_conv_bn_add
>
struct
test_conv_bn_add
:
verify_program
<
test_conv_bn_add
>
{
{
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
,
std
::
size_t
seed
=
1
)
{
{
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
bn_lens
=
x
->
get_shape
().
lens
();
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
seed
)));
auto
c_len
=
bn_lens
.
at
(
1
);
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
seed
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
seed
)));
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
seed
)));
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
return
m
.
add_instruction
(
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
}
migraphx
::
program
create_program
()
const
migraphx
::
program
create_program
()
const
...
@@ -57,10 +74,10 @@ struct test_conv_bn_add : verify_program<test_conv_bn_add>
...
@@ -57,10 +74,10 @@ struct test_conv_bn_add : verify_program<test_conv_bn_add>
{
migraphx
::
shape
::
float_type
,
{
ochannels
,
ichannels
,
1
,
1
}},
2
));
{
migraphx
::
shape
::
float_type
,
{
ochannels
,
ichannels
,
1
,
1
}},
2
));
auto
relu1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
x
);
auto
relu1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
x
);
auto
conv1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu1
,
w
);
auto
conv1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu1
,
w
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
,
ochannels
,
1
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
relu2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
y
);
auto
relu2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
y
);
auto
conv2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu2
,
v
);
auto
conv2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu2
,
v
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
,
ochannels
,
1
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
sum
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
auto
sum
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
sum
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
sum
);
return
p
;
return
p
;
...
...
test/verify/test_conv_bn_relu_pooling.cpp
View file @
fd94f579
...
@@ -27,6 +27,8 @@
...
@@ -27,6 +27,8 @@
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling
:
verify_program
<
test_conv_bn_relu_pooling
>
struct
test_conv_bn_relu_pooling
:
verify_program
<
test_conv_bn_relu_pooling
>
{
{
...
@@ -49,8 +51,26 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
...
@@ -49,8 +51,26 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
auto
bn
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
auto
bn
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
bn
);
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
bn
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
average
},
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
average
},
...
...
test/verify/test_conv_bn_relu_pooling2.cpp
View file @
fd94f579
...
@@ -27,22 +27,40 @@
...
@@ -27,22 +27,40 @@
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling2
:
verify_program
<
test_conv_bn_relu_pooling2
>
struct
test_conv_bn_relu_pooling2
:
verify_program
<
test_conv_bn_relu_pooling2
>
{
{
static
migraphx
::
instruction_ref
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
add_bn
(
migraphx
::
program
&
p
,
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
)
{
{
auto
*
mm
=
p
.
get_main_module
();
auto
bn_lens
=
x
->
get_shape
().
lens
();
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
c_len
=
bn_lens
.
at
(
1
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
channels
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
channels
)));
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
channels
)));
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
auto
variance
=
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
channels
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
return
mm
->
add_instruction
(
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
}
migraphx
::
program
create_program
()
const
migraphx
::
program
create_program
()
const
{
{
migraphx
::
program
p
;
migraphx
::
program
p
;
...
@@ -59,7 +77,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
...
@@ -59,7 +77,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
1
,
1
}},
{
"dilation"
,
{
1
,
1
}}}),
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
1
,
1
}},
{
"dilation"
,
{
1
,
1
}}}),
x1
,
x1
,
w1
);
w1
);
auto
bn1
=
add_bn
(
p
,
conv1
,
2048
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
x2
=
mm
->
add_parameter
(
"x2"
,
xs2
);
auto
x2
=
mm
->
add_parameter
(
"x2"
,
xs2
);
auto
w2
=
mm
->
add_parameter
(
"w2"
,
ws2
);
auto
w2
=
mm
->
add_parameter
(
"w2"
,
ws2
);
auto
conv2
=
mm
->
add_instruction
(
auto
conv2
=
mm
->
add_instruction
(
...
@@ -67,7 +85,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
...
@@ -67,7 +85,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x2
,
x2
,
w2
);
w2
);
auto
bn2
=
add_bn
(
p
,
conv2
,
2048
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
add
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
auto
add
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
add
);
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
add
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment