Unverified Commit fc42d852 authored by turneram's avatar turneram Committed by GitHub
Browse files

HardSigmoid ONNX parser (#1040)

Add HardSigmoid onnx parser and unit tests
Produces mathematical equivalent to ONNX operator through combination of existing pointwise ops.
Resolves #1028
parent 534a05c1
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_hardsigmoid : op_parser<parse_hardsigmoid>
{
std::vector<op_desc> operators() const { return {{"HardSigmoid"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
float alpha = 0.2;
float beta = 0.5;
if(contains(info.attributes, "alpha"))
alpha = info.attributes.at("alpha").f();
if(contains(info.attributes, "beta"))
beta = info.attributes.at("beta").f();
auto input_lens = args[0]->get_shape().lens();
auto input_type = args[0]->get_shape().type();
auto mb_alpha = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
info.add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
info.add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
info.add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
info.add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = info.add_instruction(migraphx::make_op("mul"), mb_alpha, args[0]);
auto add = info.add_instruction(migraphx::make_op("add"), mb_beta, mul);
return info.add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -1634,6 +1634,50 @@ def group_conv_test(): ...@@ -1634,6 +1634,50 @@ def group_conv_test():
return ([node], [x, y], [z]) return ([node], [x, y], [z])
@onnx_test
def hardsigmoid_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def hardsigmoid_double_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid',
inputs=['x'],
outputs=['y'],
alpha=0.3,
beta=0.7)
return ([node], [x], [y])
@onnx_test
def hardsigmoid_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def hardsigmoid_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test @onnx_test
def if_else_test(): def if_else_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3]) x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
......
No preview for this file type
hardsigmoid_default_test:i

xy" HardSigmoidhardsigmoid_default_testZ
x




b
y




B
\ No newline at end of file
hardsigmoid_double_test:
4
xy" HardSigmoid*
alpha>*
beta333?hardsigmoid_double_testZ
x
 



b
y
 



B
\ No newline at end of file
hardsigmoid_half_test:f

xy" HardSigmoidhardsigmoid_half_testZ
x





b
y





B
\ No newline at end of file
hardsigmoid_verify_test:X

xy" HardSigmoidhardsigmoid_verify_testZ
x


b
y


B
\ No newline at end of file
...@@ -1563,6 +1563,105 @@ TEST_CASE(group_conv_test) ...@@ -1563,6 +1563,105 @@ TEST_CASE(group_conv_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(hardsigmoid_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_default_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(hardsigmoid_double_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::double_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.3;
float beta = 0.7;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_double_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(hardsigmoid_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::half_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(if_else_test) TEST_CASE(if_else_test)
{ {
migraphx::program p; migraphx::program p;
......
...@@ -126,6 +126,30 @@ TEST_CASE(gather_elements) ...@@ -126,6 +126,30 @@ TEST_CASE(gather_elements)
EXPECT(migraphx::verify_range(result_vector, gold)); EXPECT(migraphx::verify_range(result_vector, gold));
} }
TEST_CASE(hardsigmoid_verify_test)
{
migraphx::program p = migraphx::parse_onnx("hardsigmoid_verify_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {2, 5}};
std::vector<float> data = {-10.0, -2.5, -1.0, -0.5, 0, 1.0, 2.0, 2.5, 2.6, 100.0};
float alpha = 0.2;
float beta = 0.5;
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold(10);
std::transform(data.begin(), data.end(), gold.begin(), [&](auto x) {
return std::max(0.0f, std::min(x * alpha + beta, 1.0f));
});
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(if_else_test) TEST_CASE(if_else_test)
{ {
migraphx::program p = migraphx::parse_onnx("if_else_test.onnx"); migraphx::program p = migraphx::parse_onnx("if_else_test.onnx");
......
...@@ -270,9 +270,6 @@ def create_backend_test(testname=None, target_device=None): ...@@ -270,9 +270,6 @@ def create_backend_test(testname=None, target_device=None):
backend_test.exclude(r'test_greater_equal_bcast_expanded_cpu') backend_test.exclude(r'test_greater_equal_bcast_expanded_cpu')
backend_test.exclude(r'test_greater_equal_cpu') backend_test.exclude(r'test_greater_equal_cpu')
backend_test.exclude(r'test_greater_equal_expanded_cpu') backend_test.exclude(r'test_greater_equal_expanded_cpu')
backend_test.exclude(r'test_hardsigmoid_cpu')
backend_test.exclude(r'test_hardsigmoid_default_cpu')
backend_test.exclude(r'test_hardsigmoid_example_cpu')
backend_test.exclude(r'test_identity_sequence_cpu') backend_test.exclude(r'test_identity_sequence_cpu')
backend_test.exclude(r'test_maxpool_2d_uint8_cpu') backend_test.exclude(r'test_maxpool_2d_uint8_cpu')
backend_test.exclude(r'test_mean_example_cpu') backend_test.exclude(r'test_mean_example_cpu')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment