Commit f9437603 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into mi100_opts

parents 781ce146 658cdab0
...@@ -185,6 +185,8 @@ rocm_enable_cppcheck( ...@@ -185,6 +185,8 @@ rocm_enable_cppcheck(
shadowVariable shadowVariable
unsafeClassDivZero unsafeClassDivZero
definePrefix:*test/include/test.hpp definePrefix:*test/include/test.hpp
useSmartPointer:*src/api/api.cpp
useSmartPointer:*make_shared_array.hpp
FORCE FORCE
INCONCLUSIVE INCONCLUSIVE
RULE_FILE RULE_FILE
...@@ -195,7 +197,9 @@ rocm_enable_cppcheck( ...@@ -195,7 +197,9 @@ rocm_enable_cppcheck(
INCLUDE INCLUDE
${CMAKE_CURRENT_SOURCE_DIR}/src/include ${CMAKE_CURRENT_SOURCE_DIR}/src/include
${CMAKE_CURRENT_SOURCE_DIR}/src/targets/cpu/include ${CMAKE_CURRENT_SOURCE_DIR}/src/targets/cpu/include
${CMAKE_CURRENT_SOURCE_DIR}/src/targets/miopen/include ${CMAKE_CURRENT_SOURCE_DIR}/src/targets/gpu/include
${CMAKE_CURRENT_SOURCE_DIR}/src/targets/gpu/device/include
${CMAKE_CURRENT_SOURCE_DIR}/src/targets/gpu/kernels/include
${CMAKE_CURRENT_SOURCE_DIR}/test/include ${CMAKE_CURRENT_SOURCE_DIR}/test/include
DEFINE DEFINE
CPPCHECK=1 CPPCHECK=1
......
...@@ -50,8 +50,12 @@ RUN update-locale LANG=en_US.UTF-8 ...@@ -50,8 +50,12 @@ RUN update-locale LANG=en_US.UTF-8
ENV LC_ALL=C.UTF-8 ENV LC_ALL=C.UTF-8
ENV LANG=C.UTF-8 ENV LANG=C.UTF-8
# Install rbuild # Install dependencies
RUN pip3 install https://github.com/RadeonOpenCompute/rbuild/archive/master.tar.gz ADD dev-requirements.txt /dev-requirements.txt
ADD requirements.txt /requirements.txt
COPY ./tools/install_prereqs.sh /
RUN /install_prereqs.sh /usr/local / && rm /install_prereqs.sh
# Install yapf # Install yapf
RUN pip3 install yapf==0.28.0 RUN pip3 install yapf==0.28.0
...@@ -60,19 +64,11 @@ RUN pip3 install yapf==0.28.0 ...@@ -60,19 +64,11 @@ RUN pip3 install yapf==0.28.0
ADD doc/requirements.txt /doc-requirements.txt ADD doc/requirements.txt /doc-requirements.txt
RUN pip3 install -r /doc-requirements.txt RUN pip3 install -r /doc-requirements.txt
RUN pip3 install onnx==1.7.0 numpy==1.18.5 typing==3.7.4 pytest==6.0.1
# Download real models to run onnx unit tests # Download real models to run onnx unit tests
ENV ONNX_HOME=$HOME ENV ONNX_HOME=$HOME
COPY ./tools/download_models.sh / COPY ./tools/download_models.sh /
RUN /download_models.sh && rm /download_models.sh RUN /download_models.sh && rm /download_models.sh
# Install dependencies
ADD dev-requirements.txt /dev-requirements.txt
ADD requirements.txt /requirements.txt
COPY ./tools/install_prereqs.sh /
RUN /install_prereqs.sh /usr/local / && rm /install_prereqs.sh
# Install latest ccache version # Install latest ccache version
RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cmake RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cmake
RUN cget -p $PREFIX install ccache@v4.1 RUN cget -p $PREFIX install ccache@v4.1
......
...@@ -153,6 +153,27 @@ In the docker container, all the required prerequisites are already installed, s ...@@ -153,6 +153,27 @@ In the docker container, all the required prerequisites are already installed, s
libs](#building-migraphx-source-and-install-libs) libs](#building-migraphx-source-and-install-libs)
section to build MIGraphX source. section to build MIGraphX source.
### Using MIGraphX Python Module
To use MIGraphX's Python module, please either set `PYTHONPATH` or use `.deb` package as explained below:
- Setting `PYTHONPATH` :
```
export PYTHONPATH=/opt/rocm/lib:$PYTHONPATH
```
- Creating and installing the package:
To create deb package:
```
make package
```
This will provide the path of .deb package.
To install:
```
dpkg -i <path_to_deb_file>
```
### Calling MIGraphX APIs ### Calling MIGraphX APIs
To use MIGraphX's C/C++ API in your cmake project, we need to set `CMAKE_PREFIX_PATH` to the MIGraphX To use MIGraphX's C/C++ API in your cmake project, we need to set `CMAKE_PREFIX_PATH` to the MIGraphX
installation location and then do installation location and then do
......
...@@ -54,19 +54,20 @@ const std::unordered_map<std::string, std::pair<const char*,const char*>>& ${EMB ...@@ -54,19 +54,20 @@ const std::unordered_map<std::string, std::pair<const char*,const char*>>& ${EMB
endfunction() endfunction()
function(embed_file OUTPUT_FILE OUTPUT_SYMBOL FILE) function(embed_file OUTPUT_FILE OUTPUT_SYMBOL FILE)
set(${OUTPUT_FILE} "${FILE}.o" PARENT_SCOPE) set(WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
set(WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# Glob is used to compute the relative path # Glob is used to compute the relative path
get_filename_component(OUTPUT_FILE_DIR "${FILE}" DIRECTORY)
file(MAKE_DIRECTORY "${WORKING_DIRECTORY}/${OUTPUT_FILE_DIR}")
file(GLOB FILES RELATIVE ${WORKING_DIRECTORY} ${FILE}) file(GLOB FILES RELATIVE ${WORKING_DIRECTORY} ${FILE})
foreach(REL_FILE ${FILES}) foreach(REL_FILE ${FILES})
string(MAKE_C_IDENTIFIER "${REL_FILE}" SYMBOL) string(MAKE_C_IDENTIFIER "${REL_FILE}" SYMBOL)
get_filename_component(OUTPUT_FILE_DIR "${REL_FILE}" DIRECTORY)
file(MAKE_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/${OUTPUT_FILE_DIR}")
set(OUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/${REL_FILE}.o")
set(${OUTPUT_SYMBOL} ${SYMBOL} PARENT_SCOPE) set(${OUTPUT_SYMBOL} ${SYMBOL} PARENT_SCOPE)
set(${OUTPUT_FILE} "${OUT_FILE}" PARENT_SCOPE)
add_custom_command( add_custom_command(
OUTPUT "${FILE}.o" OUTPUT "${OUT_FILE}"
COMMAND ${EMBED_LD} -r -o "${FILE}.o" -z noexecstack --format=binary "${REL_FILE}" COMMAND ${EMBED_LD} -r -o "${OUT_FILE}" -z noexecstack --format=binary "${REL_FILE}"
COMMAND ${EMBED_OBJCOPY} --rename-section .data=.rodata,alloc,load,readonly,data,contents "${FILE}.o" COMMAND ${EMBED_OBJCOPY} --rename-section .data=.rodata,alloc,load,readonly,data,contents "${OUT_FILE}"
WORKING_DIRECTORY ${WORKING_DIRECTORY} WORKING_DIRECTORY ${WORKING_DIRECTORY}
DEPENDS ${FILE} DEPENDS ${FILE}
VERBATIM VERBATIM
......
...@@ -91,13 +91,40 @@ ...@@ -91,13 +91,40 @@
</rule> </rule>
<rule> <rule>
<tokenlist>normal</tokenlist> <tokenlist>normal</tokenlist>
<pattern>\\W(fclose|free|hipFree|hipHostFree|hipFreeArray|hipMemFree|hipStreamDestroy|hipEventDestroy|hipArrayDestroy|hipCtxDestroy|hipDestroyTextureObject|hipDestroySurfaceObject) \(</pattern> <pattern>\\W(fclose|free|hipFree|hipHostFree|hipFreeArray|hipMemFree|hipStreamDestroy|hipEventDestroy|hipArrayDestroy|hipCtxDestroy|hipDestroyTextureObject|hipDestroySurfaceObject|miirDestroyHandle) \(</pattern>
<message> <message>
<id>useManagePointer</id> <id>useManagePointer</id>
<severity>style</severity> <severity>style</severity>
<summary>Use manage pointer for resource management</summary> <summary>Use manage pointer for resource management</summary>
</message> </message>
</rule> </rule>
<rule>
<tokenlist>normal</tokenlist>
<pattern><![CDATA[new \w+]]></pattern>
<message>
<id>useSmartPointer</id>
<severity>style</severity>
<summary>Use make_shared or make_unique instead of new</summary>
</message>
</rule>
<!-- <rule>
<tokenlist>raw</tokenlist>
<pattern><![CDATA[ \|\| ]]></pattern>
<message>
<id>UseNamedLogicOperator</id>
<severity>style</severity>
<summary>Use 'or' instead of ||</summary>
</message>
</rule>
<rule>
<tokenlist>raw</tokenlist>
<pattern><![CDATA[ ! ]]></pattern>
<message>
<id>UseNamedLogicOperator</id>
<severity>style</severity>
<summary>Use 'not' instead of !</summary>
</message>
</rule> -->
<!-- <rule> <!-- <rule>
<tokenlist>raw</tokenlist> <tokenlist>raw</tokenlist>
<pattern><![CDATA[] (__device__ |__host__ )+(\(|{)]]></pattern> <pattern><![CDATA[] (__device__ |__host__ )+(\(|{)]]></pattern>
......
...@@ -11,3 +11,5 @@ This directory contains examples of common use cases for MIGraphX. ...@@ -11,3 +11,5 @@ This directory contains examples of common use cases for MIGraphX.
- [MIGraphX Docker Container](./migraphx_docker) - [MIGraphX Docker Container](./migraphx_docker)
- [MIGraphX Driver](./migraphx_driver) - [MIGraphX Driver](./migraphx_driver)
- [Python Resnet50 Inference](./python_api_inference) - [Python Resnet50 Inference](./python_api_inference)
- [Python BERT SQuAD Inference](./python_bert_squad_example)
- [Python Super Resolution](./python_super_resolution)
\ No newline at end of file
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# BERT-SQuAD Inference Example with AMD MIGraphX"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This tutorial shows how to run the BERT-Squad model on ONNX-Runtime with MIGraphX backend."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Requirements "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip3 install -r requirements_bertsquad.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import json\n",
"import time\n",
"import os.path\n",
"from os import path\n",
"import sys\n",
"\n",
"import tokenization\n",
"from run_onnx_squad import *\n",
"\n",
"import migraphx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download BERT ONNX file"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -nc https://github.com/onnx/models/raw/master/text/machine_comprehension/bert-squad/model/bertsquad-10.onnx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download uncased file / vocabulary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!apt-get install unzip\n",
"!wget -q -nc https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip\n",
"!unzip -n uncased_L-12_H-768_A-12.zip"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Input data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_file = 'inputs.json'\n",
"with open(input_file) as json_file:\n",
" test_data = json.load(json_file)\n",
" print(json.dumps(test_data, indent=2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Configuration for inference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max_seq_length = 256\n",
"doc_stride = 128\n",
"max_query_length = 64\n",
"batch_size = 1\n",
"n_best_size = 20\n",
"max_answer_length = 30"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Read vocabulary file and tokenize"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab_file = os.path.join('uncased_L-12_H-768_A-12', 'vocab.txt')\n",
"tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,\n",
" do_lower_case=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert the example to features to input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# preprocess input\n",
"predict_file = 'inputs.json'\n",
"\n",
"# Use read_squad_examples method from run_onnx_squad to read the input file\n",
"eval_examples = read_squad_examples(input_file=predict_file)\n",
"\n",
"# Use convert_examples_to_features method from run_onnx_squad to get parameters from the input\n",
"input_ids, input_mask, segment_ids, extra_data = convert_examples_to_features(\n",
" eval_examples, tokenizer, max_seq_length, doc_stride, max_query_length)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compile with MIGraphX for GPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = migraphx.parse_onnx(\"bertsquad-10.onnx\")\n",
"model.compile(migraphx.get_target(\"gpu\"))\n",
"#model.print()\n",
"\n",
"model.get_parameter_names()\n",
"model.get_parameter_shapes()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Run the input through the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"n = len(input_ids)\n",
"bs = batch_size\n",
"all_results = []\n",
"\n",
"for idx in range(0, n):\n",
" item = eval_examples[idx]\n",
" print(item)\n",
"\n",
" result = model.run({\n",
" \"unique_ids_raw_output___9:0\":\n",
" np.array([item.qas_id], dtype=np.int64),\n",
" \"input_ids:0\":\n",
" input_ids[idx:idx + bs],\n",
" \"input_mask:0\":\n",
" input_mask[idx:idx + bs],\n",
" \"segment_ids:0\":\n",
" segment_ids[idx:idx + bs]\n",
" })\n",
"\n",
" in_batch = result[1].get_shape().lens()[0]\n",
" print(in_batch)\n",
" start_logits = [float(x) for x in result[1].tolist()]\n",
" end_logits = [float(x) for x in result[0].tolist()]\n",
" # print(start_logits)\n",
" # print(end_logits)\n",
" for i in range(0, in_batch):\n",
" unique_id = len(all_results)\n",
" all_results.append(\n",
" RawResult(unique_id=unique_id,\n",
" start_logits=start_logits,\n",
" end_logits=end_logits))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get the predictions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_dir = 'predictions'\n",
"os.makedirs(output_dir, exist_ok=True)\n",
"output_prediction_file = os.path.join(output_dir, \"predictions.json\")\n",
"output_nbest_file = os.path.join(output_dir, \"nbest_predictions.json\")\n",
"write_predictions(eval_examples, extra_data, all_results, n_best_size,\n",
" max_answer_length, True, output_prediction_file,\n",
" output_nbest_file)\n",
"\n",
"with open(output_prediction_file) as json_file:\n",
" test_data = json.load(json_file)\n",
" print(json.dumps(test_data, indent=2))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
# BERT-SQuAD Example with MIGraphX
Question answering with BERT using MIGraphX optimizations on ROCm platform.
There are two ways to run the example:
1) Install MIGraphX and Jupyter notebook to your system and then utilize `BERT-Squad.ipynb` notebook file.
2) Install MIGraphx to your system and follow the steps executing the python script `bert-squad-migraphx.py`.
# Steps
1) Install MIGraphX to your environment. Please follow the steps to build MIGraphX given at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
2) Install the requirements file
```
pip3 install -r requirements_migraphx.txt
```
3) Install `unzip` and fetch the uncased file (vocabulary):
```
apt-get install unzip
wget -q https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
unzip uncased_L-12_H-768_A-12.zip
```
4) Get BERT ONNX model (bertsquad-10.onnx):
```
wget https://github.com/onnx/models/raw/master/text/machine_comprehension/bert-squad/model/bertsquad-10.onnx
```
5) Run the inference, it will compile and run the model on three questions and small data provided in `inputs.json`:
```
python3 bert-squad-migraphx.py
```
## References
This example utilizes the following notebook :notebook: and applies it to MIGraphX:
https://github.com/onnx/models/blob/master/text/machine_comprehension/bert-squad/BERT-Squad.ipynb
import numpy as np
import json
import time
import os.path
from os import path
import sys
import tokenization
from run_onnx_squad import *
import migraphx
#######################################
input_file = 'inputs_amd.json'
with open(input_file) as json_file:
test_data = json.load(json_file)
print(json.dumps(test_data, indent=2))
# preprocess input
predict_file = 'inputs_amd.json'
# Use read_squad_examples method from run_onnx_squad to read the input file
eval_examples = read_squad_examples(input_file=predict_file)
max_seq_length = 256
doc_stride = 128
max_query_length = 64
batch_size = 1
n_best_size = 20
max_answer_length = 30
vocab_file = os.path.join('uncased_L-12_H-768_A-12', 'vocab.txt')
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file,
do_lower_case=True)
# Use convert_examples_to_features method from run_onnx_squad to get parameters from the input
input_ids, input_mask, segment_ids, extra_data = convert_examples_to_features(
eval_examples, tokenizer, max_seq_length, doc_stride, max_query_length)
#######################################
# Compile
print("INFO: Parsing and compiling the model...")
model = migraphx.parse_onnx("bertsquad-10.onnx")
model.compile(migraphx.get_target("gpu"))
#model.print()
print(model.get_parameter_names())
print(model.get_parameter_shapes())
n = len(input_ids)
bs = batch_size
all_results = []
for idx in range(0, n):
item = eval_examples[idx]
print(item)
result = model.run({
"unique_ids_raw_output___9:0":
np.array([item.qas_id], dtype=np.int64),
"input_ids:0":
input_ids[idx:idx + bs],
"input_mask:0":
input_mask[idx:idx + bs],
"segment_ids:0":
segment_ids[idx:idx + bs]
})
in_batch = result[1].get_shape().lens()[0]
start_logits = [float(x) for x in result[1].tolist()]
end_logits = [float(x) for x in result[0].tolist()]
for i in range(0, in_batch):
unique_id = len(all_results)
all_results.append(
RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
output_dir = 'predictions'
os.makedirs(output_dir, exist_ok=True)
output_prediction_file = os.path.join(output_dir, "predictions.json")
output_nbest_file = os.path.join(output_dir, "nbest_predictions.json")
write_predictions(eval_examples, extra_data, all_results, n_best_size,
max_answer_length, True, output_prediction_file,
output_nbest_file)
with open(output_prediction_file) as json_file:
test_data = json.load(json_file)
print(json.dumps(test_data, indent=2))
{
"version": "1.4",
"data": [
{
"paragraphs": [
{
"context": "In its early years, the new convention center failed to meet attendance and revenue expectations.[12] By 2002, many Silicon Valley businesses were choosing the much larger Moscone Center in San Francisco over the San Jose Convention Center due to the latter's limited space. A ballot measure to finance an expansion via a hotel tax failed to reach the required two-thirds majority to pass. In June 2005, Team San Jose built the South Hall, a $6.77 million, blue and white tent, adding 80,000 square feet (7,400 m2) of exhibit space",
"qas": [
{
"question": "where is the businesses choosing to go?",
"id": "1"
},
{
"question": "how may votes did the ballot measure need?",
"id": "2"
},
{
"question": "By what year many Silicon Valley businesses were choosing the Moscone Center?",
"id": "3"
}
]
}
],
"title": "Conference Center"
}
]
}
\ No newline at end of file
{
"data": [
{
"paragraphs": [
{
"context": "ROCm is the first open-source exascale-class platform for accelerated computing that’s also programming-language independent. It brings a philosophy of choice, minimalism and modular software development to GPU computing. You are free to choose or even develop tools and a language run time for your application. ROCm is built for scale, it supports multi-GPU computing and has a rich system run time with the critical features that large-scale application, compiler and language-run-time development requires. Since the ROCm ecosystem is comprised of open technologies: frameworks (Tensorflow / PyTorch), libraries (MIOpen / Blas / RCCL), programming model (HIP), inter-connect (OCD) and up streamed Linux® Kernel support – the platform is continually optimized for performance and extensibility.",
"qas": [
{
"question": "What is ROCm?",
"id": "1"
},
{
"question": "Which frameworks does ROCm support?",
"id": "2"
},
{
"question": "What is ROCm built for?",
"id": "3"
}
]
}
],
"title": "AMD ROCm"
}
]
}
\ No newline at end of file
tensorflow==1.14
onnxruntime
\ No newline at end of file
This diff is collapsed.
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import re
import unicodedata
import six
import tensorflow as tf
def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
"""Checks whether the casing config is consistent with the checkpoint name."""
# The casing has to be passed in by the user and there is no explicit check
# as to whether it matches the checkpoint. The casing information probably
# should have been stored in the bert_config.json file, but it's not, so
# we have to heuristically detect it to validate.
if not init_checkpoint:
return
m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
if m is None:
return
model_name = m.group(1)
lower_models = [
"uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
"multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
]
cased_models = [
"cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
"multi_cased_L-12_H-768_A-12"
]
is_bad_config = False
if model_name in lower_models and not do_lower_case:
is_bad_config = True
actual_flag = "False"
case_name = "lowercased"
opposite_flag = "True"
if model_name in cased_models and do_lower_case:
is_bad_config = True
actual_flag = "True"
case_name = "cased"
opposite_flag = "False"
if is_bad_config:
raise ValueError(
"You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
"However, `%s` seems to be a %s model, so you "
"should pass in `--do_lower_case=%s` so that the fine-tuning matches "
"how the model was pre-training. If this error is wrong, please "
"just comment out this check." %
(actual_flag, init_checkpoint, model_name, case_name,
opposite_flag))
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
index = 0
with tf.gfile.GFile(vocab_file, "r") as reader:
while True:
token = convert_to_unicode(reader.readline())
if not token:
break
token = token.strip()
vocab[token] = index
index += 1
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat in ("Cc", "Cf"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64)
or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
# Super Resolution with AMD MIGraphX
This example is based on [ONNX run_super_resolution_model notebook](https://github.com/onnx/models/blob/master/vision/super_resolution/sub_pixel_cnn_2016/dependencies/Run_Super_Resolution_Model.ipynb) and modified for MIGraphX.
## Description
Given an input image, this application resizes the image to 224x224 and then scales it to 672x672, thus it is useful for upscaling low-resolution images.
### Model Utilized
> "Super Resolution uses efficient [Sub-pixel convolutional layer](https://arxiv.org/abs/1609.05158) described for increasing spatial resolution within network tasks. By increasing pixel count, images are then clarified, sharpened, and upscaled without losing the input image’s content and characteristics." [[Reference]](https://github.com/onnx/models/blob/master/vision/super_resolution/sub_pixel_cnn_2016/README.md)
Model in PyTorch definitions:
```
self.relu = nn.ReLU(inplace=inplace)
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
```
## How-to
If you have jupyter installed, you can simply use the notebook given. Otherwise please follow the step-by-step guide.
### Jupyter Notebook
Run Jupyter notebook server on a ROCm and MIGraphX installed system, and run `Run_Super_Resolution_Model.ipynb`
### Step by Step
1) Upgrade pip3. You may skip this stage if you already have latest pip3. This step is needed for OpenCV installation.
```
pip3 install --upgrade pip
```
2) Install requirements.
```
pip3 install -r requirements.txt
```
3) Import required libraries.
```
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
from resizeimage import resizeimage
```
4) Download ONNX model.
```
wget -nc https://github.com/onnx/models/raw/master/vision/super_resolution/sub_pixel_cnn_2016/model/super-resolution-10.onnx
```
5) Preprocess the sample image `cat.jpg`.
```
orig_img = Image.open("./cat.jpg")
print(orig_img.size)
img = resizeimage.resize_cover(orig_img, [224,224], validate=False)
img_ycbcr = img.convert('YCbCr')
img_y_0, img_cb, img_cr = img_ycbcr.split()
img_ndarray = np.asarray(img_y_0)
img_4 = np.expand_dims(np.expand_dims(img_ndarray, axis=0), axis=0)
img_5 = img_4.astype(np.float32) / 255.0
```
6) Import MIGraphX, parse & compile the ONNX model with MIGraphX. Print the model.
```
model = migraphx.parse_onnx("super-resolution-10.onnx")
model.compile(migraphx.get_target("gpu"))
model.print()
```
7) You can check the model inputs and outputs with the following functions.
```
print(model.get_parameter_names())
print(model.get_parameter_shapes())
print(model.get_output_shapes())
```
8) Run the image throgh model and get the output data.
```
result = model.run({
"input": img_5
})
data = np.array(result[0])[0]
```
9) Post processing image. If matplotlib is installed correctly, it should show up the image. The output image will be stored with filename `output.jpg`.
```
img_out_y = Image.fromarray(np.uint8((data* 255.0).clip(0, 255)[0]), mode='L')
# get the output image follow post-processing step from PyTorch implementation
final_img = Image.merge(
"YCbCr", [
img_out_y,
img_cb.resize(img_out_y.size, Image.BICUBIC),
img_cr.resize(img_out_y.size, Image.BICUBIC),
]).convert("RGB")
final_img.save("output.jpg")
print(final_img.size)
```
10) Measure the improvement in terms of PSNR and show the both input and super-resolution image:
```
import cv2
imgIN = cv2.imread('cat.jpg')
imgOUT = cv2.imread('output.jpg')
imgIN = cv2.cvtColor(imgIN, cv2.COLOR_BGR2RGB) #BGR to RGB
imgOUT = cv2.cvtColor(imgOUT, cv2.COLOR_BGR2RGB)
imgIN_resized = cv2.resize(imgIN, (672,672)) #Resizing input to 672
psnr = cv2.PSNR(imgIN_resized, imgOUT) #dimensions need to be same
print("PSNR Value = %.3f db"%psnr)
fig = plt.figure(figsize=(16, 16))
sp1 = fig.add_subplot(1, 2, 1)
sp1.title.set_text('Output Super Resolution Image (%sx%s)'%(imgOUT.shape[0], imgOUT.shape[1]))
plt.imshow(imgOUT)
sp2 = fig.add_subplot(1, 2, 2)
sp2.title.set_text('Input Image (%sx%s)'%(imgIN.shape[0], imgIN.shape[1]))
plt.imshow(imgIN)
plt.show()
```
\ No newline at end of file
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Super Resolution Inference with AMD MIGraphX\n",
"This notebook is inspired from: https://github.com/onnx/models/blob/master/vision/super_resolution/sub_pixel_cnn_2016/dependencies/Run_Super_Resolution_Model.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip3 install --upgrade pip #needed for opencv-python installation\n",
"!pip3 install -r requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from PIL import Image, ImageDraw, ImageFont\n",
"from resizeimage import resizeimage\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download ONNX Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -nc https://github.com/onnx/models/raw/master/vision/super_resolution/sub_pixel_cnn_2016/model/super-resolution-10.onnx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import MIGraphX Python Module"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import migraphx"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preprocessing Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"orig_img = Image.open(\"./cat.jpg\")\n",
"print(orig_img.size)\n",
"img = resizeimage.resize_cover(orig_img, [224,224], validate=False)\n",
"img_ycbcr = img.convert('YCbCr')\n",
"img_y_0, img_cb, img_cr = img_ycbcr.split()\n",
"img_ndarray = np.asarray(img_y_0)\n",
"\n",
"img_4 = np.expand_dims(np.expand_dims(img_ndarray, axis=0), axis=0)\n",
"img_5 = img_4.astype(np.float32) / 255.0\n",
"img_5"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = migraphx.parse_onnx(\"super-resolution-10.onnx\")\n",
"model.compile(migraphx.get_target(\"gpu\"))\n",
"#model.print()\n",
"\n",
"print(model.get_parameter_names())\n",
"print(model.get_parameter_shapes())\n",
"print(model.get_output_shapes())\n",
"\n",
"\n",
"result = model.run({\n",
" \"input\": img_5\n",
" })\n",
"\n",
"data = np.array(result[0])[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Postprocessing Image"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"img_out_y = Image.fromarray(np.uint8((data* 255.0).clip(0, 255)[0]), mode='L')\n",
"# get the output image follow post-processing step from PyTorch implementation\n",
"final_img = Image.merge(\n",
" \"YCbCr\", [\n",
" img_out_y,\n",
" img_cb.resize(img_out_y.size, Image.BICUBIC),\n",
" img_cr.resize(img_out_y.size, Image.BICUBIC),\n",
" ]).convert(\"RGB\")\n",
"final_img.save(\"output.jpg\")\n",
"print(final_img.size)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"## PSNR Comparison Output vs Input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cv2\n",
"\n",
"imgIN = cv2.imread('cat.jpg')\n",
"imgOUT = cv2.imread('output.jpg')\n",
"imgIN = cv2.cvtColor(imgIN, cv2.COLOR_BGR2RGB) #BGR to RGB\n",
"imgOUT = cv2.cvtColor(imgOUT, cv2.COLOR_BGR2RGB)\n",
"\n",
"imgIN_resized = cv2.resize(imgIN, (672,672)) #Resizing input to 672\n",
"\n",
"psnr = cv2.PSNR(imgIN_resized, imgOUT) #dimensions need to be same\n",
"print(\"PSNR Value = %.3f db\"%psnr)\n",
"\n",
"fig = plt.figure(figsize=(16, 16))\n",
"sp1 = fig.add_subplot(1, 2, 1)\n",
"sp1.title.set_text('Output Super Resolution Image (%sx%s)'%(imgOUT.shape[0], imgOUT.shape[1]))\n",
"plt.imshow(imgOUT)\n",
"\n",
"sp2 = fig.add_subplot(1, 2, 2)\n",
"sp2.title.set_text('Input Image (%sx%s)'%(imgIN.shape[0], imgIN.shape[1]))\n",
"plt.imshow(imgIN)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
matplotlib
python-resize-image
opencv-python
\ No newline at end of file
...@@ -11,7 +11,10 @@ add_library(migraphx ...@@ -11,7 +11,10 @@ add_library(migraphx
eliminate_common_subexpression.cpp eliminate_common_subexpression.cpp
decompose.cpp decompose.cpp
propagate_constant.cpp propagate_constant.cpp
compile_src.cpp
cpp_generator.cpp
dead_code_elimination.cpp dead_code_elimination.cpp
dynamic_loader.cpp
eliminate_allocation.cpp eliminate_allocation.cpp
eliminate_contiguous.cpp eliminate_contiguous.cpp
eliminate_concat.cpp eliminate_concat.cpp
...@@ -30,6 +33,7 @@ add_library(migraphx ...@@ -30,6 +33,7 @@ add_library(migraphx
msgpack.cpp msgpack.cpp
operation.cpp operation.cpp
permutation.cpp permutation.cpp
process.cpp
program.cpp program.cpp
module.cpp module.cpp
quantization.cpp quantization.cpp
...@@ -53,6 +57,7 @@ add_library(migraphx ...@@ -53,6 +57,7 @@ add_library(migraphx
normalize_attributes.cpp normalize_attributes.cpp
normalize_ops.cpp normalize_ops.cpp
) )
configure_file(version.h.in include/migraphx/version.h)
rocm_set_soversion(migraphx ${MIGRAPHX_SO_VERSION}) rocm_set_soversion(migraphx ${MIGRAPHX_SO_VERSION})
function(register_migraphx_ops) function(register_migraphx_ops)
foreach(OP ${ARGN}) foreach(OP ${ARGN})
...@@ -159,6 +164,7 @@ rocm_install_targets( ...@@ -159,6 +164,7 @@ rocm_install_targets(
TARGETS migraphx TARGETS migraphx
INCLUDE INCLUDE
${CMAKE_CURRENT_SOURCE_DIR}/include ${CMAKE_CURRENT_SOURCE_DIR}/include
${CMAKE_CURRENT_BINARY_DIR}/include
) )
...@@ -167,6 +173,8 @@ if(HAS_LIB_STD_FILESYSTEM) ...@@ -167,6 +173,8 @@ if(HAS_LIB_STD_FILESYSTEM)
target_link_libraries(migraphx PRIVATE -lstdc++fs) target_link_libraries(migraphx PRIVATE -lstdc++fs)
endif() endif()
target_link_libraries(migraphx PRIVATE -ldl)
target_include_directories(migraphx SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>) target_include_directories(migraphx SYSTEM PUBLIC $<BUILD_INTERFACE:${HALF_INCLUDE_DIR}>)
find_package(msgpack REQUIRED) find_package(msgpack REQUIRED)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment