Commit eb0d8fee authored by Paul's avatar Paul
Browse files

Merge branch 'develop' into driver

parents 65ef35cd 0d796941
......@@ -27,7 +27,8 @@ struct raw_data : raw_data_base
template <class Stream>
friend Stream& operator<<(Stream& os, const Derived& d)
{
d.visit([&](auto x) { os << x; });
if(not d.empty())
d.visit([&](auto x) { os << x; });
return os;
}
......@@ -40,8 +41,11 @@ struct raw_data : raw_data_base
template <class Visitor>
void visit_at(Visitor v, std::size_t n = 0) const
{
auto&& s = static_cast<const Derived&>(*this).get_shape();
auto&& buffer = static_cast<const Derived&>(*this).data();
auto&& derived = static_cast<const Derived&>(*this);
if(derived.empty())
MIGRAPHX_THROW("Visiting empty data!");
auto&& s = derived.get_shape();
auto&& buffer = derived.data();
s.visit_type([&](auto as) { v(*(as.from(buffer) + s.index(n))); });
}
......@@ -55,8 +59,11 @@ struct raw_data : raw_data_base
template <class Visitor>
void visit(Visitor v) const
{
auto&& s = static_cast<const Derived&>(*this).get_shape();
auto&& buffer = static_cast<const Derived&>(*this).data();
auto&& derived = static_cast<const Derived&>(*this);
if(derived.empty())
MIGRAPHX_THROW("Visiting empty data!");
auto&& s = derived.get_shape();
auto&& buffer = derived.data();
s.visit_type([&](auto as) { v(make_view(s, as.from(buffer))); });
}
......
......@@ -11,6 +11,15 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace detail {
struct reflect_placeholder
{
template <class... Ts>
int operator()(Ts&&...) const
{
return 0;
}
};
template <class T, class Selector>
auto reflect_impl(rank<1>, T& x, Selector f) -> decltype(T::reflect(x, f))
{
......@@ -23,8 +32,53 @@ auto reflect_impl(rank<0>, T&, Selector)
return pack();
}
template <class T>
auto reflectable_impl(rank<1>, T&& x)
-> decltype(T::reflect(x, reflect_placeholder{}), std::true_type{});
template <class T>
auto reflectable_impl(rank<0>, T &&) -> decltype(std::false_type{});
template <class T>
struct remove_rvalue_reference
{
using type = T;
};
template <class T>
struct remove_rvalue_reference<T&&>
{
using type = T;
};
template <class T>
struct wrapper
{
using type = typename remove_rvalue_reference<T>::type;
type data;
type get() const { return data; }
};
template <class T>
wrapper<T> wrap(std::remove_reference_t<T>& x)
{
return wrapper<T>{std::forward<T>(x)};
}
template <class... Ts>
using auto_tuple_t = std::tuple<typename remove_rvalue_reference<Ts>::type...>;
template <class... Ts>
auto_tuple_t<Ts...> auto_tuple(Ts&&... xs)
{
return auto_tuple_t<Ts...>{std::forward<Ts>(xs)...};
}
} // namespace detail
template <class T>
using is_reflectable = decltype(detail::reflectable_impl(rank<1>{}, std::declval<T>()));
template <class T, class Selector>
auto reflect(T& x, Selector f)
{
......@@ -34,17 +88,18 @@ auto reflect(T& x, Selector f)
template <class T>
auto reflect_tie(T& x)
{
return reflect(x, [](auto&& y, auto&&...) { return std::ref(y); })(
[](auto&&... xs) { return std::tie(xs.get()...); });
return reflect(x, [](auto&& y, auto&&...) { return detail::wrap<decltype(y)>(y); })(
[](auto&&... xs) { return detail::auto_tuple(xs.get()...); });
}
template <class T, class F>
void reflect_each(T& x, F f)
{
return reflect(x, [](auto&& y, auto... ys) { return pack(std::ref(y), ys...); })(
[&](auto&&... xs) {
each_args([&](auto p) { p([&](auto&& y, auto... ys) { f(y.get(), ys...); }); }, xs...);
});
return reflect(x, [](auto&& y, auto... ys) {
return pack(detail::wrap<decltype(y)>(y), ys...);
})([&](auto&&... xs) {
each_args([&](auto p) { p([&](auto&& y, auto... ys) { f(y.get(), ys...); }); }, xs...);
});
}
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -4,7 +4,7 @@
#include <string>
#include <vector>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
......@@ -45,6 +45,18 @@ struct rewrite_rnn
const operation& actv_func2) const;
std::vector<operation> gru_actv_funcs(instruction_ref ins) const;
// for lstm operators
void apply_lstm(program& prog, instruction_ref ins) const;
std::vector<instruction_ref> lstm_cell(bool is_forward,
program& prog,
instruction_ref ins,
std::vector<instruction_ref> inputs,
const operation& actv_func1,
const operation& actv_func2,
const operation& actv_func3) const;
std::vector<operation> lstm_actv_funcs(instruction_ref ins) const;
};
} // namespace MIGRAPHX_INLINE_NS
......
#ifndef MIGRAPHX_GUARD_RTGLIB_SCHEDULE_HPP
#define MIGRAPHX_GUARD_RTGLIB_SCHEDULE_HPP
#include <string>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/schedule_model.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct program;
/**
* Schedule instructions for concurrent execution
*/
struct schedule
{
schedule_model model{};
bool enable = true;
std::string name() const { return "schedule"; }
void apply(program& p) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_SCHEDULE_MODEL_HPP
#define MIGRAPHX_GUARD_SCHEDULE_MODEL_HPP
#include <cassert>
#include <string>
#include <functional>
#include <memory>
#include <type_traits>
#include <utility>
#include <migraphx/config.hpp>
#include <migraphx/instruction_ref.hpp>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct program;
struct operation;
#ifdef DOXYGEN
/// An interface for target-dependent model for the scheduler
struct schedule_model
{
/// Get the number of concurrent instruction allowed
std::size_t concurrency() const;
/// Schedule a concurrent instruction
void sched(program& p, instruction_ref ins, std::size_t n) const;
// Insert necessary waits before an instruction
void wait(program& p, instruction_ref ins, std::size_t wait_id) const;
// Insert necessary records after an instruction
void record(program& p, instruction_ref ins, std::size_t wait_id) const;
/// Compute weights for an operation
std::size_t weight(const operation& op) const;
};
#else
/*
* Type-erased interface for:
*
* struct schedule_model
* {
* std::size_t concurrency() const;
* void sched(program& p,instruction_ref ins,std::size_t n) const;
* void wait(program& p,instruction_ref ins,std::size_t wait_id) const;
* void record(program& p,instruction_ref ins,std::size_t wait_id) const;
* std::size_t weight(const operation& op) const;
* };
*
*/
struct schedule_model
{
// Constructors
schedule_model() = default;
template <typename PrivateDetailTypeErasedT>
schedule_model(PrivateDetailTypeErasedT value)
: private_detail_te_handle_mem_var(
std::make_shared<private_detail_te_handle_type<
typename std::remove_reference<PrivateDetailTypeErasedT>::type>>(
std::forward<PrivateDetailTypeErasedT>(value)))
{
}
// Assignment
template <typename PrivateDetailTypeErasedT>
schedule_model& operator=(PrivateDetailTypeErasedT value)
{
if(private_detail_te_handle_mem_var.unique())
*private_detail_te_handle_mem_var = std::forward<PrivateDetailTypeErasedT>(value);
else if(!private_detail_te_handle_mem_var)
private_detail_te_handle_mem_var = std::make_shared<PrivateDetailTypeErasedT>(
std::forward<PrivateDetailTypeErasedT>(value));
return *this;
}
// Cast
template <typename PrivateDetailTypeErasedT>
PrivateDetailTypeErasedT* any_cast()
{
return private_detail_te_get_handle().type() == typeid(PrivateDetailTypeErasedT)
? std::addressof(static_cast<private_detail_te_handle_type<
typename std::remove_cv<PrivateDetailTypeErasedT>::type>&>(
private_detail_te_get_handle())
.private_detail_te_value)
: nullptr;
}
template <typename PrivateDetailTypeErasedT>
const typename std::remove_cv<PrivateDetailTypeErasedT>::type* any_cast() const
{
return private_detail_te_get_handle().type() == typeid(PrivateDetailTypeErasedT)
? std::addressof(static_cast<const private_detail_te_handle_type<
typename std::remove_cv<PrivateDetailTypeErasedT>::type>&>(
private_detail_te_get_handle())
.private_detail_te_value)
: nullptr;
}
const std::type_info& type_id() const
{
if(private_detail_te_handle_empty())
return typeid(std::nullptr_t);
else
return private_detail_te_get_handle().type();
}
std::size_t concurrency() const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().concurrency();
}
void sched(program& p, instruction_ref ins, std::size_t n) const
{
assert((*this).private_detail_te_handle_mem_var);
(*this).private_detail_te_get_handle().sched(p, ins, n);
}
void wait(program& p, instruction_ref ins, std::size_t wait_id) const
{
assert((*this).private_detail_te_handle_mem_var);
(*this).private_detail_te_get_handle().wait(p, ins, wait_id);
}
void record(program& p, instruction_ref ins, std::size_t wait_id) const
{
assert((*this).private_detail_te_handle_mem_var);
(*this).private_detail_te_get_handle().record(p, ins, wait_id);
}
std::size_t weight(const operation& op) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().weight(op);
}
friend bool is_shared(const schedule_model& private_detail_x,
const schedule_model& private_detail_y)
{
return private_detail_x.private_detail_te_handle_mem_var ==
private_detail_y.private_detail_te_handle_mem_var;
}
private:
struct private_detail_te_handle_base_type
{
virtual ~private_detail_te_handle_base_type() {}
virtual std::shared_ptr<private_detail_te_handle_base_type> clone() const = 0;
virtual const std::type_info& type() const = 0;
virtual std::size_t concurrency() const = 0;
virtual void sched(program& p, instruction_ref ins, std::size_t n) const = 0;
virtual void wait(program& p, instruction_ref ins, std::size_t wait_id) const = 0;
virtual void record(program& p, instruction_ref ins, std::size_t wait_id) const = 0;
virtual std::size_t weight(const operation& op) const = 0;
};
template <typename PrivateDetailTypeErasedT>
struct private_detail_te_handle_type : private_detail_te_handle_base_type
{
template <typename PrivateDetailTypeErasedU = PrivateDetailTypeErasedT>
private_detail_te_handle_type(
PrivateDetailTypeErasedT value,
typename std::enable_if<std::is_reference<PrivateDetailTypeErasedU>::value>::type* =
nullptr)
: private_detail_te_value(value)
{
}
template <typename PrivateDetailTypeErasedU = PrivateDetailTypeErasedT>
private_detail_te_handle_type(
PrivateDetailTypeErasedT value,
typename std::enable_if<!std::is_reference<PrivateDetailTypeErasedU>::value,
int>::type* = nullptr) noexcept
: private_detail_te_value(std::move(value))
{
}
std::shared_ptr<private_detail_te_handle_base_type> clone() const override
{
return std::make_shared<private_detail_te_handle_type>(private_detail_te_value);
}
const std::type_info& type() const override { return typeid(private_detail_te_value); }
std::size_t concurrency() const override { return private_detail_te_value.concurrency(); }
void sched(program& p, instruction_ref ins, std::size_t n) const override
{
private_detail_te_value.sched(p, ins, n);
}
void wait(program& p, instruction_ref ins, std::size_t wait_id) const override
{
private_detail_te_value.wait(p, ins, wait_id);
}
void record(program& p, instruction_ref ins, std::size_t wait_id) const override
{
private_detail_te_value.record(p, ins, wait_id);
}
std::size_t weight(const operation& op) const override
{
return private_detail_te_value.weight(op);
}
PrivateDetailTypeErasedT private_detail_te_value;
};
template <typename PrivateDetailTypeErasedT>
struct private_detail_te_handle_type<std::reference_wrapper<PrivateDetailTypeErasedT>>
: private_detail_te_handle_type<PrivateDetailTypeErasedT&>
{
private_detail_te_handle_type(std::reference_wrapper<PrivateDetailTypeErasedT> ref)
: private_detail_te_handle_type<PrivateDetailTypeErasedT&>(ref.get())
{
}
};
bool private_detail_te_handle_empty() const
{
return private_detail_te_handle_mem_var == nullptr;
}
const private_detail_te_handle_base_type& private_detail_te_get_handle() const
{
assert(private_detail_te_handle_mem_var != nullptr);
return *private_detail_te_handle_mem_var;
}
private_detail_te_handle_base_type& private_detail_te_get_handle()
{
assert(private_detail_te_handle_mem_var != nullptr);
if(!private_detail_te_handle_mem_var.unique())
private_detail_te_handle_mem_var = private_detail_te_handle_mem_var->clone();
return *private_detail_te_handle_mem_var;
}
std::shared_ptr<private_detail_te_handle_base_type> private_detail_te_handle_mem_var;
};
template <typename ValueType>
inline const ValueType* any_cast(const schedule_model* x)
{
return x->any_cast<ValueType>();
}
template <typename ValueType>
inline ValueType* any_cast(schedule_model* x)
{
return x->any_cast<ValueType>();
}
template <typename ValueType>
inline ValueType& any_cast(schedule_model& x)
{
auto* y = x.any_cast<typename std::remove_reference<ValueType>::type>();
if(y == nullptr)
throw std::bad_cast();
return *y;
}
template <typename ValueType>
inline const ValueType& any_cast(const schedule_model& x)
{
const auto* y = x.any_cast<typename std::remove_reference<ValueType>::type>();
if(y == nullptr)
throw std::bad_cast();
return *y;
}
#endif
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -36,6 +36,8 @@ inline stream_range_container<Range> stream_range(const Range& r)
namespace detail {
inline void stream_write_value_impl(rank<2>, std::ostream& os, const std::string& x) { os << x; }
template <class Range>
auto stream_write_value_impl(rank<1>, std::ostream& os, const Range& r)
-> decltype(r.begin(), r.end(), void())
......@@ -53,7 +55,7 @@ void stream_write_value_impl(rank<0>, std::ostream& os, const T& x)
template <class T>
void stream_write_value(std::ostream& os, const T& x)
{
detail::stream_write_value_impl(rank<1>{}, os, x);
detail::stream_write_value_impl(rank<2>{}, os, x);
}
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -38,8 +38,9 @@ inline std::string join_strings(Strings strings, const std::string& delim)
return "";
auto nit = std::next(it);
return std::accumulate(
nit, strings.end(), *it, [&](std::string x, std::string y) { return x + delim + y; });
return std::accumulate(nit, strings.end(), *it, [&](std::string x, std::string y) {
return std::move(x) + delim + std::move(y);
});
}
template <class F>
......
......@@ -22,10 +22,8 @@ struct target
{
/// A unique name used to identify the target
std::string name() const;
/// The transformation passes to be run
/**
* @brief The transformation pass to be run during compilation.
* @details [long description]
*
* @param ctx This is the target-dependent context that is created by `get_context`
* @return The passes to be ran
......
......@@ -12,6 +12,14 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class T>
T as_number(T x)
{
return x;
}
inline int32_t as_number(int8_t x) { return static_cast<int32_t>(x); }
inline uint32_t as_number(uint8_t x) { return static_cast<uint32_t>(x); }
template <class T>
struct tensor_view
{
......@@ -124,14 +132,16 @@ struct tensor_view
return m_data + this->size();
}
std::vector<T> to_vector() const { return std::vector<T>(this->begin(), this->end()); }
friend std::ostream& operator<<(std::ostream& os, const tensor_view<T>& x)
{
if(!x.empty())
{
os << x.front();
os << as_number(x.front());
for(std::size_t i = 1; i < x.m_shape.elements(); i++)
{
os << ", " << x.m_data[x.m_shape.index(i)];
os << ", " << as_number(x.m_data[x.m_shape.index(i)]);
}
}
return os;
......
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_TF_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_TF_HPP
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
/// Create a program from a tf pb file (default is nhwc format)
program parse_tf(const std::string& name, bool is_nhwc);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -28,6 +28,12 @@ void instruction::replace(const shape& r)
}
}
void instruction::replace(operation o)
{
op = std::move(o);
recompute_shape();
}
void instruction::recompute_shape() { replace(compute_shape(op, arguments)); }
void instruction::clear_arguments()
......@@ -162,7 +168,24 @@ void instruction::replace_argument(instruction_ref old, instruction_ref new_ins)
old->remove_output(*this);
}
argument instruction::eval() const
bool instruction::can_eval() const
{
if(op.name() == "@literal")
{
return true;
}
else if(is_context_free(op))
{
return std::all_of(
this->inputs().begin(), this->inputs().end(), [](auto arg) { return arg->can_eval(); });
}
else
{
return false;
}
}
argument instruction::eval(bool check_eval) const
{
if(op.name() == "@literal")
{
......@@ -170,14 +193,13 @@ argument instruction::eval() const
}
if(is_context_free(op))
{
if(check_eval and not this->can_eval())
return {};
std::vector<argument> args;
for(auto&& arg : this->inputs())
{
argument a = arg->eval();
if(a.empty())
return {};
args.push_back(a);
}
std::transform(this->inputs().begin(),
this->inputs().end(),
std::back_inserter(args),
[](auto arg) { return arg->eval(false); });
return op.compute(result, args);
}
return {};
......
......@@ -32,7 +32,7 @@ auto read_cifar10_images(const std::string& full_path)
labels[i] = *pimage++;
for(size_t j = 0; j < nbytes_per_image; j++)
{
float v = *(pimage + j) / 255.0f;
float v = float(*(pimage + j)) / 255.0f;
data[i * nbytes_per_image + j] = v;
}
}
......
......@@ -36,7 +36,6 @@ struct onnx_parser
onnx_parser()
{
add_generic_op("MatMul", op::dot{});
add_generic_op("Relu", op::relu{});
add_generic_op("Sigmoid", op::sigmoid{});
add_generic_op("Abs", op::abs{});
......@@ -64,6 +63,7 @@ struct onnx_parser
add_variadic_op("Max", op::max{});
add_variadic_op("Min", op::min{});
add_mem_op("Clip", &onnx_parser::parse_clip);
add_mem_op("LRN", &onnx_parser::parse_lrn);
add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
......@@ -77,8 +77,10 @@ struct onnx_parser
add_mem_op("Reshape", &onnx_parser::parse_reshape);
add_mem_op("Flatten", &onnx_parser::parse_flatten);
add_mem_op("Gemm", &onnx_parser::parse_gemm);
add_mem_op("MatMul", &onnx_parser::parse_matmul);
add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
add_mem_op("Softmax", &onnx_parser::parse_softmax);
add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
add_mem_op("Slice", &onnx_parser::parse_slice);
......@@ -89,6 +91,7 @@ struct onnx_parser
add_mem_op("Transpose", &onnx_parser::parse_transpose);
add_mem_op("RNN", &onnx_parser::parse_rnn);
add_mem_op("GRU", &onnx_parser::parse_gru);
add_mem_op("LSTM", &onnx_parser::parse_lstm);
add_mem_op("Pad", &onnx_parser::parse_pad);
// init the activation function map
......@@ -139,8 +142,8 @@ struct onnx_parser
if(broadcasted != 0)
{
uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
auto l =
prog.add_instruction(op::broadcast{axis, args[0]->get_shape()}, args[1]);
auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
args[1]);
return prog.add_instruction(x, args[0], l);
}
return prog.add_instruction(x, args);
......@@ -152,42 +155,48 @@ struct onnx_parser
});
}
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1)
{
// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
if(s0.size() > s1.size())
{
s0.swap(s1);
}
std::vector<std::size_t> out_lens(s1);
auto offset = s1.size() - s0.size();
std::transform(s0.begin(),
s0.end(),
s1.begin() + offset,
out_lens.begin() + offset,
[](auto a, auto b) { return std::max(a, b); });
return out_lens;
}
template <class T>
instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
{
if(arg0->get_shape() != arg1->get_shape())
{
// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
//
if(arg0->get_shape().lens() != arg1->get_shape().lens())
{
// Get lengths for both arguments
const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();
// Make sure s0 is the smaller size
if(s0->size() > s1->size())
std::swap(s0, s1);
std::vector<std::size_t> output_lens(*s1);
auto offset = s1->size() - s0->size();
std::transform(s0->begin(),
s0->end(),
s1->begin() + offset,
output_lens.begin() + offset,
[](auto a, auto b) { return std::max(a, b); });
auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
auto s0 = arg0->get_shape().lens();
auto s1 = arg1->get_shape().lens();
auto out_lens = compute_broadcasted_lens(s0, s1);
auto l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
auto l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
return prog.add_instruction(x, l0, l1);
}
else
......@@ -199,7 +208,7 @@ struct onnx_parser
template <class T>
void add_generic_op(std::string name, T x)
{
add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
return prog.add_instruction(x, args);
});
}
......@@ -207,7 +216,7 @@ struct onnx_parser
template <class T>
void add_variadic_op(std::string name, T x)
{
add_op(name, [this, x](attribute_map, std::vector<instruction_ref> args) {
add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
return std::accumulate(std::next(args.begin()),
args.end(),
args.front(),
......@@ -217,6 +226,22 @@ struct onnx_parser
});
}
instruction_ref parse_clip(const std::string&,
const attribute_map& attributes,
std::vector<instruction_ref> args)
{
op::clip op;
if(contains(attributes, "max"))
{
op.max_val = parse_value(attributes.at("max")).at<float>();
}
if(contains(attributes, "min"))
{
op.min_val = parse_value(attributes.at("min")).at<float>();
}
return prog.add_instruction(op, std::move(args));
}
instruction_ref
parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
......@@ -227,6 +252,19 @@ struct onnx_parser
return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
}
instruction_ref parse_logsoftmax(const std::string&,
const attribute_map& attributes,
std::vector<instruction_ref> args)
{
int axis = 1;
if(contains(attributes, "axis"))
{
axis = parse_value(attributes.at("axis")).at<int>();
}
return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
}
instruction_ref
parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
......@@ -285,7 +323,7 @@ struct onnx_parser
{
uint64_t axis = 1;
auto l1 = prog.add_instruction(op, args[0], args[1]);
auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape()}, args[2]);
auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
return prog.add_instruction(op::add{}, l1, l2);
}
return prog.add_instruction(op, l0, args[1]);
......@@ -354,7 +392,9 @@ struct onnx_parser
}
if(args.size() == 2)
{
literal s = args[1]->get_literal();
auto s = args[1]->eval();
if(s.empty())
MIGRAPHX_THROW("Dynamic shape is not supported.");
s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
}
return prog.add_instruction(op, args[0]);
......@@ -433,7 +473,15 @@ struct onnx_parser
attribute_map attributes,
const std::vector<instruction_ref>&)
{
literal v = parse_value(attributes.at("value"));
literal v = parse_value(attributes.at("value"));
auto dim_size = attributes.at("value").t().dims_size();
// if dim_size is 0, it is a scalar
if(dim_size == 0)
{
migraphx::shape scalar_shape{v.get_shape().type()};
return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
}
return prog.add_literal(v);
}
......@@ -460,29 +508,96 @@ struct onnx_parser
{
transb = parse_value(attributes.at("transB")).at<bool>();
}
std::vector<int64_t> perm = {1, 0};
std::vector<int64_t> perm(args[0]->get_shape().lens().size());
std::iota(perm.begin(), perm.end(), int64_t{0});
// swap the last two elements
std::swap(*perm.rbegin(), *(perm.rbegin() + 1));
auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
if(args.size() == 3)
{
if(beta != 0.f)
if(beta != 0.f && args[2]->get_shape().elements() > 0)
{
auto l3 = prog.add_instruction(op::dot{alpha}, l1, l2);
auto l4 = args[2];
if(l4->get_shape().scalar()) // ignore args[2] (no C value added to alpha*A*B)
return l3;
if(beta != 1.f)
auto out_lens = l1->get_shape().lens();
out_lens.back() = l2->get_shape().lens().back();
auto l3 = args[2];
auto l3_lens = l3->get_shape().lens();
if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
{
auto beta_val = prog.add_literal(beta);
auto l5 = prog.add_instruction(op::scalar{args[2]->get_shape()}, beta_val);
l4 = prog.add_instruction(op::mul{}, args[2], l5);
l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
}
return add_broadcastable_binary_op(l3, l4, op::add{});
return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
}
}
return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
}
instruction_ref
parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
auto l0 = args[0];
auto l1 = args[1];
auto l0_lens = l0->get_shape().lens();
auto l1_lens = l1->get_shape().lens();
// args[0] is a vector, prepend 1 to the shape
bool is_a_prepended = false;
if(l0_lens.size() == 1)
{
is_a_prepended = true;
l0_lens.insert(l0_lens.begin(), 1);
l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
}
bool is_b_appended = false;
if(l1_lens.size() == 1)
{
is_b_appended = true;
l1_lens.push_back(1);
l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
}
instruction_ref bl0 = l0;
instruction_ref bl1 = l1;
if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
{
auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
l0_broadcasted_lens = output_lens;
l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
l1_broadcasted_lens = output_lens;
l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
if(l0_lens != l0_broadcasted_lens)
{
bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
}
if(l1_lens != l1_broadcasted_lens)
{
bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
}
}
auto dot_res = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
if(is_a_prepended)
{
dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
--num_axis;
}
if(is_b_appended)
{
dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
}
return dot_res;
}
instruction_ref
parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
......@@ -573,15 +688,15 @@ struct onnx_parser
auto&& bias_floats = attributes["bias"].floats();
bias = std::vector<float>(bias_floats.begin(), bias_floats.end());
}
auto input_shape = args.front()->get_shape();
auto input_lens = args.front()->get_shape().lens();
auto scale_val = prog.add_literal(scale);
auto bias_vals = prog.add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_shape}, scale_val);
auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
auto img_scaled = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_shape}, bias_vals);
auto bias_bcast = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
}
......@@ -607,6 +722,11 @@ struct onnx_parser
auto&& pad_vals = attributes["pads"].ints();
pads = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
}
// check if padding is actually being done (at least one value is nonzero)
if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
{
return prog.add_instruction(migraphx::op::identity{}, args.front());
}
if(contains(attributes, "value"))
{
value = parse_value(attributes.at("value")).at<float>();
......@@ -749,15 +869,17 @@ struct onnx_parser
{
auto names = attributes.at("activations").strings();
vec_names.clear();
for_each(names.begin(), names.end(), [&](auto& fn) { vec_names.push_back(fn); });
vec_names.resize(names.size());
std::copy(names.begin(), names.end(), vec_names.begin());
}
for_each(vec_names.begin(), vec_names.end(), [&](auto& fn) {
if(map_actv_funcs.count(fn) == 0)
{
MIGRAPHX_THROW("RNN: activation function " + std::string(fn) + " not supported");
}
auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
return (map_actv_funcs.count(name) == 0);
});
if(name_it != vec_names.end())
{
MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
}
// bidirectional case should have two activation functions.
// one is for forward, and the other is for reverse.
......@@ -839,8 +961,7 @@ struct onnx_parser
auto names = attributes.at("activations").strings();
vec_names.clear();
vec_names.resize(names.size());
std::transform(
names.begin(), names.end(), vec_names.begin(), [](auto& str) { return str; });
std::copy(names.begin(), names.end(), vec_names.begin());
}
// need 4 activation functions
......@@ -878,12 +999,13 @@ struct onnx_parser
}
}
for_each(vec_names.begin(), vec_names.end(), [&](auto& name) {
if(map_actv_funcs.count(name) == 0)
{
MIGRAPHX_THROW("GRU: activation function " + std::string(name) + " not supported");
}
auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
return (map_actv_funcs.count(name) == 0);
});
if(name_it != vec_names.end())
{
MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
}
std::vector<operation> vec_actv_funcs(vec_names.size());
std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
......@@ -920,6 +1042,178 @@ struct onnx_parser
return {hidden_states, last_output};
}
std::vector<instruction_ref>
parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
migraphx::shape input_shape = args[0]->get_shape();
std::size_t hidden_size = args[2]->get_shape().lens()[2];
if(contains(attributes, "hidden_size"))
{
std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
if(hidden_size != hidden_size_att)
{
MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
}
}
// Handling of direction to be added later
std::string direction{"forward"};
if(contains(attributes, "direction"))
{
direction = attributes.at("direction").s();
}
op::rnn_direction dirct = op::rnn_direction::forward;
if(direction == "bidirectional")
{
dirct = op::rnn_direction::bidirectional;
}
else if(direction == "reverse")
{
dirct = op::rnn_direction::reverse;
}
else if(direction == "forward")
{
dirct = op::rnn_direction::forward;
}
else
{
MIGRAPHX_THROW("LSTM: incorrect direction attribute");
}
std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
if(contains(attributes, "activations"))
{
auto names = attributes.at("activations").strings();
vec_names.clear();
vec_names.resize(names.size());
std::copy(names.begin(), names.end(), vec_names.begin());
}
// need 6 activation functions for bidirectional directions
if(dirct == op::rnn_direction::bidirectional)
{
// 6 activation functions are used in the bidirectional
// scenario. No spec is provided in onnx::operator. we
// use the algorithm that: if 1 actv function is provided,
// repeat 1st six times. If 2 actv functins are provided,
// repeat 2nd once, then repeat all three once
// if 3 actv funcs are provide, repeat all three once.
// the same algorithm is used for 4, 5, and 6 actv funcions
// provided. This may need change later
switch(vec_names.size())
{
case 1:
vec_names = {vec_names.at(0),
vec_names.at(0),
vec_names.at(0),
vec_names.at(0),
vec_names.at(0),
vec_names.at(0)};
break;
case 2:
// repeat the 2nd actv func once, then repeat all three another time
vec_names = {vec_names.at(0),
vec_names.at(1),
vec_names.at(1),
vec_names.at(0),
vec_names.at(1),
vec_names.at(1)};
break;
case 3:
// repeat all three actv funcs once
vec_names = {vec_names.at(0),
vec_names.at(1),
vec_names.at(2),
vec_names.at(0),
vec_names.at(1),
vec_names.at(2)};
break;
case 4:
vec_names = {vec_names.at(0),
vec_names.at(1),
vec_names.at(2),
vec_names.at(3),
vec_names.at(3),
vec_names.at(3)};
break;
case 5:
vec_names = {vec_names.at(0),
vec_names.at(1),
vec_names.at(2),
vec_names.at(3),
vec_names.at(4),
vec_names.at(4)};
break;
default: break;
}
}
else
{
switch(vec_names.size())
{
case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
case 2:
// repeat the 2nd actv func once, so we have 3 actv funcs
vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
break;
default: break;
}
}
auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
return (map_actv_funcs.count(name) == 0);
});
if(name_it != vec_names.end())
{
MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
}
std::vector<operation> vec_actv_funcs(vec_names.size());
std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
return map_actv_funcs[name];
});
float clip = 0.0;
if(contains(attributes, "clip"))
{
clip = parse_value(attributes.at("clip")).at<float>();
}
int input_forget = 0;
if(contains(attributes, "input_forget"))
{
input_forget = parse_value(attributes.at("input_forget")).at<int>();
}
// append undefined opeator to make 6 arguments
if(args.size() < 8)
{
auto ins = prog.add_instruction(op::undefined{});
args.insert(args.end(), 8 - args.size(), ins);
}
// first output for concatenation of hidden states
auto hidden_states = prog.add_instruction(
op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
// second output for last lstm output
auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
// third output for last cell output
auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);
return {hidden_states, last_output, last_cell_output};
}
void parse_from(std::istream& is)
{
onnx::ModelProto model;
......@@ -960,9 +1254,9 @@ struct onnx_parser
instructions[name] = prog.add_parameter(name, s);
}
}
for(auto&& p : nodes)
for(auto&& output : graph.output())
{
this->parse_node(p.first);
this->parse_node(output.name());
}
}
......@@ -996,7 +1290,7 @@ struct onnx_parser
std::vector<instruction_ref> result;
if(ops.count(node.op_type()) == 0)
{
result.push_back(prog.add_instruction(unknown{node.op_type()}, args));
result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
}
else
{
......@@ -1084,28 +1378,26 @@ struct onnx_parser
static literal parse_tensor(const onnx::TensorProto& t)
{
std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
// in case of scalar constants in onnx file, use dims=1 to fill initializer data
if(dims.empty())
{
dims = {1};
}
if(t.has_raw_data())
{
const std::string& s = t.raw_data();
switch(t.data_type())
{
case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
case onnx::TensorProto::FLOAT: return literal{{shape::float_type, dims}, s.data()};
case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
case onnx::TensorProto::UINT8: throw std::runtime_error("");
case onnx::TensorProto::INT8: return literal{{shape::int32_type, dims}, s.data()};
case onnx::TensorProto::UINT16: return literal{{shape::int32_type, dims}, s.data()};
case onnx::TensorProto::INT16: return literal{{shape::int32_type, dims}, s.data()};
case onnx::TensorProto::INT32: return literal{{shape::int32_type, dims}, s.data()};
case onnx::TensorProto::INT64: return literal{{shape::int64_type, dims}, s.data()};
case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::UINT16:
return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
case onnx::TensorProto::STRING: throw std::runtime_error("");
case onnx::TensorProto::BOOL: return literal{{shape::int32_type, dims}, s.data()};
case onnx::TensorProto::FLOAT16: return literal{{shape::half_type, dims}, s.data()};
case onnx::TensorProto::DOUBLE: return literal{{shape::double_type, dims}, s.data()};
case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
case onnx::TensorProto::FLOAT16:
return create_literal(shape::half_type, dims, s.data());
case onnx::TensorProto::DOUBLE:
return create_literal(shape::double_type, dims, s.data());
case onnx::TensorProto::UINT32: throw std::runtime_error("");
case onnx::TensorProto::UINT64: throw std::runtime_error("");
case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
......@@ -1117,26 +1409,33 @@ struct onnx_parser
{
case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
case onnx::TensorProto::FLOAT:
return literal{{shape::float_type, dims}, t.float_data().begin(), t.float_data().end()};
return create_literal(shape::float_type, dims, t.float_data());
case onnx::TensorProto::UINT8: throw std::runtime_error("");
case onnx::TensorProto::INT8:
return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::UINT16:
return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT16:
return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT32:
return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::INT64:
return literal{{shape::int64_type, dims}, t.int64_data().begin(), t.int64_data().end()};
return create_literal(shape::int64_type, dims, t.int64_data());
case onnx::TensorProto::STRING: throw std::runtime_error("");
case onnx::TensorProto::BOOL:
return literal{{shape::int32_type, dims}, t.int32_data().begin(), t.int32_data().end()};
return create_literal(shape::int32_type, dims, t.int32_data());
case onnx::TensorProto::FLOAT16:
return literal{{shape::half_type, dims}, t.float_data().begin(), t.float_data().end()};
{
std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
std::vector<half> data_half;
std::transform(data_uint16.begin(),
data_uint16.end(),
std::back_inserter(data_half),
[](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
return create_literal(shape::half_type, dims, data_half);
}
case onnx::TensorProto::DOUBLE:
return literal{
{shape::double_type, dims}, t.double_data().begin(), t.double_data().end()};
return create_literal(shape::double_type, dims, t.double_data());
case onnx::TensorProto::UINT32: throw std::runtime_error("");
case onnx::TensorProto::UINT64: throw std::runtime_error("");
case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
......@@ -1145,6 +1444,23 @@ struct onnx_parser
MIGRAPHX_THROW("Invalid tensor type");
}
static literal
create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
{
// in case of scalar constants in onnx file, use dims=1 to fill initializer data
if(dims.empty())
return literal{{shape_type}, data};
return literal{{shape_type, dims}, data};
}
template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
{
if(dims.empty())
return literal{{shape_type}, data.begin(), data.end()};
return literal{{shape_type, dims}, data.begin(), data.end()};
}
static shape parse_type(const onnx::TypeProto& t)
{
shape::type_t shape_type{};
......
#ifndef MIGRAPHX_GUARD_RTGLIB_COMMON_HEADER_HPP
#define MIGRAPHX_GUARD_RTGLIB_COMMON_HEADER_HPP
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_config.hpp>
#include <migraphx/config.hpp>
#include <set>
#include <list>
#include <vector>
#include <queue>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
//#define MIGRAPHX_DEBUG_OPT
#ifdef MIGRAPHX_DEBUG_OPT
#define MIGRAPHX_DEBUG(s) s
#else
#define MIGRAPHX_DEBUG(s)
#endif // MIGRAPHX_DEBUG_OPT
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_RTGLIB_COMMON_HEADER_HPP
#include <migraphx/op/load.hpp>
#include "memory_coloring_impl.hpp"
namespace migraphx {
......@@ -62,11 +63,11 @@ bool memory_coloring_impl::allocate(interval_ptr interval)
}
}
long long offset = 0;
std::size_t offset = 0;
while(!conflict_queue.empty())
{
live_range* range = conflict_queue.top();
long long iter_offset = range->offset;
live_range* range = conflict_queue.top();
std::size_t iter_offset = range->offset;
if(offset > iter_offset)
{
offset = std::max(offset, iter_offset + range->size);
......@@ -96,7 +97,7 @@ void memory_coloring_impl::build()
if(num_of_instrs == 0)
return;
int cur_points = num_of_instrs * 2;
auto cur_points = num_of_instrs * 2;
instruction_ref iter = p_program->end();
instruction_ref begin = p_program->begin();
std::vector<instruction_ref> dead_instrs;
......@@ -176,7 +177,7 @@ void memory_coloring_impl::build()
void memory_coloring_impl::rewrite()
{
std::vector<std::size_t> dims;
dims.push_back(required_bytes / sizeof(float));
dims.push_back((required_bytes + sizeof(float) - 1) / sizeof(float));
shape s = {shape::float_type, dims};
instruction_ref scratch_param = p_program->add_parameter("scratch", s);
for(auto ins : iterator_for(*p_program))
......@@ -192,29 +193,19 @@ void memory_coloring_impl::rewrite()
continue;
std::size_t offset = 0;
if(interval->get_offset() == invalid_offset)
if(interval->get_offset() != invalid_offset)
{
assert(interval->result.bytes() == 0);
offset = interval->get_offset();
}
else
{
offset = interval->get_offset();
assert(interval->result.bytes() == 0);
}
if(is_allocate(ins))
{
assert(!ins->inputs().empty());
p_program->replace_instruction(
ins, op::load{ins->inputs().at(0)->get_shape(), offset}, scratch_param);
}
else if(is_literal(ins))
{
#if 0
auto pre = p_program->add_literal(ins->lit);
bool pre_copy = (interval->get_begin() < earliest_end_point);
p_program->replace_instruction(
ins, write_literal{offset, pre_copy}, scratch_param, pre);
#endif
ins, op::load{ins->get_shape(), offset}, scratch_param);
}
}
}
......
#ifndef MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_IMPL_HPP
#define MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_IMPL_HPP
#include "common_header.hpp"
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_config.hpp>
#include <migraphx/config.hpp>
#include <set>
#include <list>
#include <vector>
#include <queue>
#ifdef MIGRAPHX_DEBUG_OPT
#define MIGRAPHX_DEBUG(s) s
#else
#define MIGRAPHX_DEBUG(s)
#endif // MIGRAPHX_DEBUG_OPT
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
static const int invalid_offset = -1;
static const std::size_t invalid_offset = std::numeric_limits<std::size_t>::max();
struct live_range
{
int begin; // begin point in the instruction stream.
int end; // end point in the instruction stream.
long long offset; // offset to base pointer of allocated memory trunk.
int vn; // value number that identifies this live_range.
long long size; // size of required memory in bytes
std::size_t begin; // begin point in the instruction stream.
std::size_t end; // end point in the instruction stream.
std::size_t offset; // offset to base pointer of allocated memory trunk.
std::size_t vn; // value number that identifies this live_range.
std::size_t size; // size of required memory in bytes
#ifdef MIGRAPHX_DEBUG_OPT
void dump();
#endif
......@@ -30,9 +45,9 @@ struct live_interval
is_live_on_entry = false;
}
void add_use(int use) { use_points.push_front(use); }
int get_begin() const { return segment.begin; }
int get_end() const { return segment.end; }
void add_use(std::size_t use) { use_points.push_front(use); }
std::size_t get_begin() const { return segment.begin; }
std::size_t get_end() const { return segment.end; }
long long get_offset() const { return segment.offset; }
#ifdef MIGRAPHX_DEBUG_OPT
......@@ -40,9 +55,9 @@ struct live_interval
#endif
live_range segment;
int id;
std::list<int> use_points;
int def_point;
std::size_t id;
std::list<std::size_t> use_points;
std::size_t def_point;
shape result;
bool is_literal;
bool is_live_on_entry;
......@@ -96,8 +111,8 @@ struct memory_coloring_impl
{
if((range1.size == 0) || (range2.size == 0))
return false;
long long end1 = range1.offset + range1.size - 1;
long long end2 = range2.offset + range2.size - 1;
auto end1 = range1.offset + range1.size - 1;
auto end2 = range2.offset + range2.size - 1;
return ((end1 < range2.offset) || (end2 < range1.offset));
}
void verify();
......@@ -110,8 +125,8 @@ struct memory_coloring_impl
{
bool operator()(const interval_ptr i1, const interval_ptr i2) const
{
int len1 = i1->get_end() - i1->get_begin();
int len2 = i2->get_end() - i2->get_begin();
auto len1 = i1->get_end() - i1->get_begin();
auto len2 = i2->get_end() - i2->get_begin();
if(len1 != len2)
{
return (len1 < len2);
......@@ -143,7 +158,7 @@ struct memory_coloring_impl
int num_of_lives;
int max_value_number;
long long required_bytes;
std::size_t required_bytes;
// The earliest program point where an live interval ends.
int earliest_end_point;
// The latest program point where an live interval ends.
......
#include <migraphx/program.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/target.hpp>
#include <migraphx/env.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/time.hpp>
#include <migraphx/iterator_for.hpp>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void run_passes(program& prog, const std::vector<pass>& passes, tracer trace)
{
for(auto& p : passes)
{
trace("Pass: ", p.name());
p.apply(prog);
trace(prog);
#ifndef NDEBUG
trace("Validate ...");
auto invalid = prog.validate();
if(invalid != prog.end())
{
auto index = std::distance(prog.begin(), invalid);
MIGRAPHX_THROW(p.name() + " pass produces invalid program at instruction " +
std::to_string(index) + ": " + invalid->name());
}
trace();
#endif
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/target.hpp>
#include <migraphx/env.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/time.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_manager.hpp>
#include <iostream>
#include <sstream>
#include <algorithm>
......@@ -14,9 +16,6 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_COMPILE)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_EVAL)
struct program_impl
{
// A list is used to keep references to an instruction stable
......@@ -57,18 +56,23 @@ static void print_instruction(std::ostream& os,
}
template <class F>
static void print_program(std::ostream& os, const program& p, F annonate)
static void print_program(const program& p, F print_func)
{
std::unordered_map<instruction_ref, std::string> names;
int count = 0;
for(auto ins : iterator_for(p))
{
std::string var_name = "@" + std::to_string(count);
std::string var_name;
if(ins->name() == "@param")
{
var_name = any_cast<builtin::param>(ins->get_operator()).parameter;
}
else
{
var_name = "@" + std::to_string(count);
count++;
}
names.emplace(ins, var_name);
// TODO: Use all_of
......@@ -78,21 +82,77 @@ static void print_program(std::ostream& os, const program& p, F annonate)
(void)arg;
}
print_instruction(os, ins, names);
annonate(ins, names);
os << std::endl;
count++;
print_func(ins, names);
}
}
program::program() : impl(std::make_unique<program_impl>()) {}
program::program(program&&) noexcept = default;
program& program::operator=(program&&) noexcept = default;
program::~program() noexcept = default;
program::~program() noexcept = default;
// copy constructor
program::program(const program& p) { assign(p); }
// copy assignment operator
program& program::operator=(program p)
{
std::swap(p.impl, this->impl);
return *this;
}
void program::assign(const program& p)
{
// clean the current program
if(!impl)
{
impl = std::make_unique<program_impl>();
}
else if(!impl->instructions.empty())
{
impl->instructions.clear();
}
impl->ctx = p.impl->ctx;
std::unordered_map<instruction_ref, instruction_ref> ins_map;
for(auto ins : iterator_for(p))
{
instruction_ref copy_ins{};
if(ins->name() == "@literal")
{
auto l = ins->get_literal();
copy_ins = impl->instructions.insert(impl->instructions.end(), instruction{l});
}
else if(ins->name() == "@param")
{
auto&& name = any_cast<builtin::param>(ins->get_operator()).parameter;
auto s = ins->get_shape();
copy_ins = impl->instructions.insert(impl->instructions.end(),
{builtin::param{name}, std::move(s), {}});
}
else if(ins->name() == "@outline")
{
auto s = ins->get_shape();
copy_ins =
impl->instructions.insert(impl->instructions.end(), {builtin::outline{s}, s, {}});
}
else
{
// retrieve its mapped input
auto inputs = ins->inputs();
// ensure all inputs have its corresponding copy instructions
assert(std::all_of(
inputs.begin(), inputs.end(), [&](auto i) { return ins_map.count(i) > 0; }));
std::vector<instruction_ref> copy_inputs(inputs.size());
std::transform(inputs.begin(), inputs.end(), copy_inputs.begin(), [&](auto i) {
return ins_map[i];
});
copy_ins = add_instruction(ins->get_operator(), copy_inputs);
}
ins_map[ins] = copy_ins;
}
}
instruction_ref program::add_instruction(const operation& op, std::vector<instruction_ref> args)
{
......@@ -106,11 +166,9 @@ instruction_ref program::insert_instruction(instruction_ref ins,
args.begin(), args.end(), [&](instruction_ref x) { return has_instruction(x); }) &&
"Argument is not an exisiting instruction");
assert(not starts_with(op.name(), "@"));
// TODO: Use move
shape r = compute_shape(op, args);
auto result = impl->instructions.insert(ins, {op, r, std::move(args)});
instruction::backreference(result);
// assert(result->inputs() == args);
assert(result->valid(begin()));
return result;
}
......@@ -295,23 +353,7 @@ void program::compile(const target& t, tracer trace)
trace = tracer{std::cout};
trace(*this);
trace();
for(auto&& p : t.get_passes(this->impl->ctx))
{
trace("Pass: ", p.name());
p.apply(*this);
trace(*this);
#ifndef NDEBUG
trace("Validate ...");
auto invalid = this->validate();
if(invalid != impl->instructions.end())
{
auto index = std::distance(impl->instructions.begin(), invalid);
MIGRAPHX_THROW(p.name() + " pass produces invalid program at instruction " +
std::to_string(index) + ": " + invalid->name());
}
trace();
#endif
}
run_passes(*this, t.get_passes(this->impl->ctx), trace);
auto invalid = this->validate();
if(invalid != impl->instructions.end())
{
......@@ -348,13 +390,17 @@ argument generic_eval(const program& p,
}
else if(ins->name() == "@param")
{
results.emplace(ins, trace(ins, [&] {
auto param_name =
any_cast<builtin::param>(ins->get_operator()).parameter;
if(not contains(params, param_name))
MIGRAPHX_THROW("Parameter not found: " + param_name);
return params.at(param_name);
}));
results.emplace(
ins, trace(ins, [&] {
auto param_name = any_cast<builtin::param>(ins->get_operator()).parameter;
if(not contains(params, param_name))
MIGRAPHX_THROW("Parameter not found: " + param_name);
auto param = params.at(param_name);
if(param.get_shape() != ins->get_shape())
MIGRAPHX_THROW("Incorrect shape {" + to_string(param.get_shape()) +
"} for parameter: " + param_name);
return param;
}));
}
else if(ins->name() == "@outline")
{
......@@ -391,13 +437,20 @@ argument program::eval(std::unordered_map<std::string, argument> params) const
#else
auto check_context = [](auto f) { return f(); };
#endif
if(enabled(MIGRAPHX_TRACE_EVAL{}))
auto trace_level = value_of(MIGRAPHX_TRACE_EVAL{});
if(trace_level > 0)
{
return generic_eval(*this, ctx, std::move(params), [&](auto& ins, auto f) {
ctx.finish();
std::cout << "Run instruction: ";
this->debug_print(ins);
return check_context(f);
auto result = check_context(f);
ctx.finish();
if(trace_level > 1 and ins->name().front() != '@' and ins->name() != "load")
std::cout << "Ouput: " << result << std::endl;
return result;
});
}
else
......@@ -475,10 +528,12 @@ void program::perf_report(std::ostream& os, std::size_t n, parameter_map params)
double calculate_overhead_time = total_time - total_instruction_time;
double calculate_overhead_percent = calculate_overhead_time * 100.0 / total_time;
print_program(os, *this, [&](auto ins, auto&&) {
print_program(*this, [&](auto ins, const auto& names) {
print_instruction(std::cout, ins, names);
double avg = common_average(ins_vec[ins]);
double percent = std::ceil(100.0 * avg / total_instruction_time);
os << ": " << avg << "ms, " << percent << "%";
os << std::endl;
});
os << std::endl;
......@@ -505,8 +560,18 @@ void program::perf_report(std::ostream& os, std::size_t n, parameter_map params)
void program::debug_print() const { std::cout << *this << std::endl; }
void program::debug_print(instruction_ref ins) const
{
if(ins == this->end())
{
std::cout << "End instruction" << std::endl;
return;
}
if(not has_instruction(ins))
{
std::cout << "Instruction not part of program" << std::endl;
return;
}
std::stringstream ss;
print_program(ss, *this, [&](auto x, auto&& names) {
print_program(*this, [&](auto x, const auto& names) {
if(x == ins)
{
print_instruction(std::cout, x, names);
......@@ -521,17 +586,55 @@ void program::debug_print(const std::vector<instruction_ref>& inss) const
std::cout << std::endl;
}
static std::string enclose_name(const std::string& name)
{
return '"' + replace_string(name, "\"", "\\\"") + '"';
}
void program::print_graph(std::ostream& os) const
{
os << "digraph {" << std::endl;
os << "\trankdir=LR;" << std::endl;
print_program(*this, [&](auto ins, const auto& names) {
os << "\t" << enclose_name(names.at(ins))
<< "[label=" << enclose_name(to_string(ins->get_operator())) << "];";
os << std::endl;
if(!ins->inputs().empty())
{
for(auto&& arg : ins->inputs())
{
os << "\t" << enclose_name(names.at(arg)) << " -> " << enclose_name(names.at(ins));
os << "[label=" << enclose_name(to_string(ins->get_shape())) << "];";
os << std::endl;
}
}
});
os << "}" << std::endl;
}
void program::dry_run(std::unordered_map<std::string, argument> params) const
{
auto& ctx = this->impl->ctx;
generic_eval(*this, ctx, std::move(params), [](auto&&...) { return argument{}; });
}
void program::annotate(std::ostream& os, std::function<void(instruction_ref)> a) const
{
print_program(*this, [&](auto ins, const auto& names) {
print_instruction(os, ins, names);
a(ins);
os << std::endl;
});
}
bool operator==(const program& x, const program& y) { return to_string(x) == to_string(y); }
std::ostream& operator<<(std::ostream& os, const program& p)
{
print_program(os, p, [](auto&&...) {});
print_program(p, [&](auto ins, const auto& names) {
print_instruction(os, ins, names);
os << std::endl;
});
return os;
}
......
#include <migraphx/propagate_constant.hpp>
#include <migraphx/program.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/functional.hpp>
#include <unordered_set>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
bool skip_propogate(instruction_ref ins)
{
if(ins->name() == "@literal")
return true;
auto&& s = ins->get_shape();
if(s.broadcasted() and not s.scalar())
return true;
if(s.scalar() and s.elements() != 1)
return true;
return false;
}
void propagate_constant::apply(program& p) const
{
for(auto i : iterator_for(p))
{
if(i->name() != "@literal")
continue;
if(i->outputs().empty())
continue;
fix([&](auto self, auto ins) {
std::unordered_set<instruction_ref> children(ins->outputs().begin(),
ins->outputs().end());
for(auto child : children)
{
if(skip_propogate(child))
{
self(child);
continue;
}
auto r = child->eval();
if(not r.empty())
{
assert(r.get_shape() == child->get_shape());
auto l = p.add_literal(r.get_shape(), r.data());
self(p.replace_instruction(child, l));
}
}
})(i);
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
option(MIGRAPHX_ENABLE_PYTHON "Enable python bindings" ON)
if(MIGRAPHX_ENABLE_PYTHON)
find_program(DEFAULT_PYTHON_EXE python)
if(DEFAULT_PYTHON_EXE)
set(PYTHON_EXECUTABLE ${DEFAULT_PYTHON_EXE} CACHE PATH "Path to python executable")
endif()
find_package(pybind11 REQUIRED)
pybind11_add_module(migraphx_py migraphx_py.cpp)
set_target_properties(migraphx_py PROPERTIES
OUTPUT_NAME migraphx
C_VISIBILITY_PRESET hidden
CXX_VISIBILITY_PRESET hidden
)
target_link_libraries(migraphx_py PRIVATE migraphx migraphx_onnx migraphx_cpu)
if(MIGRAPHX_ENABLE_GPU)
target_link_libraries(migraphx_py PRIVATE migraphx_gpu)
target_compile_definitions(migraphx_py PRIVATE -DHAVE_GPU)
endif()
find_program(DEFAULT_PYTHON_EXE python)
if(DEFAULT_PYTHON_EXE)
set(PYTHON_EXECUTABLE ${DEFAULT_PYTHON_EXE} CACHE PATH "Path to python executable")
endif()
find_package(pybind11 REQUIRED)
pybind11_add_module(migraphx_py migraphx_py.cpp)
set_target_properties(migraphx_py PROPERTIES
OUTPUT_NAME migraphx
C_VISIBILITY_PRESET hidden
CXX_VISIBILITY_PRESET hidden
)
if(MIGRAPHX_ENABLE_TF)
target_link_libraries(migraphx_py PRIVATE migraphx migraphx_tf migraphx_cpu)
target_compile_definitions(migraphx_py PRIVATE -DENABLE_TF)
else()
target_link_libraries(migraphx_py PRIVATE migraphx migraphx_onnx migraphx_cpu)
endif()
if(MIGRAPHX_ENABLE_GPU)
target_link_libraries(migraphx_py PRIVATE migraphx_gpu)
target_compile_definitions(migraphx_py PRIVATE -DHAVE_GPU)
endif()
rocm_install_targets(TARGETS migraphx_py)
endif()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment