Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
eb0d8fee
Commit
eb0d8fee
authored
Jun 04, 2019
by
Paul
Browse files
Merge branch 'develop' into driver
parents
65ef35cd
0d796941
Changes
320
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
810 additions
and
1290 deletions
+810
-1290
src/include/migraphx/op/scalar.hpp
src/include/migraphx/op/scalar.hpp
+50
-0
src/include/migraphx/op/sigmoid.hpp
src/include/migraphx/op/sigmoid.hpp
+32
-0
src/include/migraphx/op/sin.hpp
src/include/migraphx/op/sin.hpp
+32
-0
src/include/migraphx/op/sinh.hpp
src/include/migraphx/op/sinh.hpp
+32
-0
src/include/migraphx/op/slice.hpp
src/include/migraphx/op/slice.hpp
+96
-0
src/include/migraphx/op/softmax.hpp
src/include/migraphx/op/softmax.hpp
+33
-0
src/include/migraphx/op/squeeze.hpp
src/include/migraphx/op/squeeze.hpp
+80
-0
src/include/migraphx/op/sub.hpp
src/include/migraphx/op/sub.hpp
+32
-0
src/include/migraphx/op/tan.hpp
src/include/migraphx/op/tan.hpp
+32
-0
src/include/migraphx/op/tanh.hpp
src/include/migraphx/op/tanh.hpp
+32
-0
src/include/migraphx/op/transpose.hpp
src/include/migraphx/op/transpose.hpp
+67
-0
src/include/migraphx/op/unary.hpp
src/include/migraphx/op/unary.hpp
+59
-0
src/include/migraphx/op/unsqueeze.hpp
src/include/migraphx/op/unsqueeze.hpp
+67
-0
src/include/migraphx/operation.hpp
src/include/migraphx/operation.hpp
+13
-11
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+59
-1273
src/include/migraphx/pass_manager.hpp
src/include/migraphx/pass_manager.hpp
+25
-0
src/include/migraphx/program.hpp
src/include/migraphx/program.hpp
+19
-1
src/include/migraphx/propagate_constant.hpp
src/include/migraphx/propagate_constant.hpp
+4
-4
src/include/migraphx/quantization.hpp
src/include/migraphx/quantization.hpp
+21
-0
src/include/migraphx/ranges.hpp
src/include/migraphx/ranges.hpp
+25
-1
No files found.
src/include/migraphx/op/scalar.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SCALAR_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCALAR_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
scalar
{
std
::
vector
<
std
::
size_t
>
scalar_bcast_lens
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
scalar_bcast_lens
,
"scalar_bcst_dims"
));
}
std
::
string
name
()
const
{
return
"scalar"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
assert
(
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
1
).
size
()
==
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
std
::
vector
<
std
::
size_t
>
strides
(
scalar_bcast_lens
.
size
(),
0
);
return
{
t
,
scalar_bcast_lens
,
strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/sigmoid.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SIGMOID_HPP
#define MIGRAPHX_GUARD_OPERATORS_SIGMOID_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
sigmoid
:
unary
<
sigmoid
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
1.
f
/
(
1.
f
+
std
::
exp
(
-
x
));
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/sin.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SIN_HPP
#define MIGRAPHX_GUARD_OPERATORS_SIN_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
sin
:
unary
<
sin
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
sin
(
x
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/sinh.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SINH_HPP
#define MIGRAPHX_GUARD_OPERATORS_SINH_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
sinh
:
unary
<
sinh
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
sinh
(
x
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/slice.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SLICE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SLICE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
slice
{
std
::
vector
<
int64_t
>
axes
;
std
::
vector
<
int64_t
>
starts
;
std
::
vector
<
int64_t
>
ends
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
),
f
(
self
.
starts
,
"starts"
),
f
(
self
.
ends
,
"ends"
));
}
std
::
string
name
()
const
{
return
"slice"
;
}
auto
fix_index
(
const
std
::
vector
<
std
::
size_t
>&
lens
,
std
::
size_t
axis
,
int64_t
index
)
const
{
int64_t
r
=
std
::
min
(
index
,
static_cast
<
int64_t
>
(
lens
[
axis
]));
if
(
r
<
0
)
r
+=
lens
[
axis
];
return
std
::
size_t
(
r
);
}
auto
compute_offset
(
const
shape
&
s
)
const
{
const
std
::
vector
<
std
::
size_t
>&
lens
=
s
.
lens
();
const
std
::
vector
<
std
::
size_t
>&
strides
=
s
.
strides
();
auto
offset
=
0
;
if
(
!
axes
.
empty
())
{
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
offset
+=
fix_index
(
lens
,
axis
,
starts
[
i
])
*
strides
[
axis
];
}
}
else
{
for
(
std
::
size_t
axis
=
0
;
axis
<
lens
.
size
();
axis
++
)
{
offset
+=
fix_index
(
lens
,
axis
,
starts
[
axis
])
*
strides
[
axis
];
}
}
return
offset
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
t
=
input_shape
.
type
();
const
auto
&
old_lens
=
input_shape
.
lens
();
const
auto
&
old_strides
=
input_shape
.
strides
();
if
(
starts
.
size
()
!=
axes
.
size
()
||
axes
.
size
()
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"inconsistent sizes"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
=
old_lens
;
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
new_lens
[
axis
]
=
fix_index
(
old_lens
,
axis
,
ends
[
i
])
-
fix_index
(
old_lens
,
axis
,
starts
[
i
]);
}
return
shape
{
t
,
new_lens
,
old_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
offset
=
compute_offset
(
input
.
get_shape
())
*
output_shape
.
type_size
();
return
{
std
::
move
(
output_shape
),
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/softmax.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
softmax
{
std
::
string
name
()
const
{
return
"softmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
4
);
return
inputs
.
at
(
0
);
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/squeeze.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SQUEEZE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SQUEEZE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
squeeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"squeeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
input_shape
.
lens
()[
axis
]
!=
1
;
}))
{
MIGRAPHX_THROW
(
"squeeze axis dimension should be equal to 1"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
;
if
(
axes
.
empty
())
{
std
::
copy_if
(
old_lens
.
begin
(),
old_lens
.
end
(),
std
::
back_inserter
(
new_lens
),
[](
auto
len
)
{
return
len
!=
1
;
});
}
else
{
for
(
std
::
size_t
i
=
0
;
i
<
old_lens
.
size
();
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
{
new_lens
.
push_back
(
old_lens
[
i
]);
}
}
}
if
(
new_lens
.
empty
())
{
return
shape
{
type
};
}
else
{
return
shape
{
type
,
new_lens
};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/sub.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_SUB_HPP
#define MIGRAPHX_GUARD_OPERATORS_SUB_HPP
#include <array>
#include <migraphx/op/binary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
sub
:
binary
<
sub
>
{
auto
apply
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
-
y
;
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/tan.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_TAN_HPP
#define MIGRAPHX_GUARD_OPERATORS_TAN_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
tan
:
unary
<
tan
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
tan
(
x
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/tanh.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_TANH_HPP
#define MIGRAPHX_GUARD_OPERATORS_TANH_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
tanh
:
unary
<
tanh
>
{
auto
apply
()
const
{
return
[](
auto
x
)
{
return
std
::
tanh
(
x
);
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/transpose.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_TRANSPOSE_HPP
#define MIGRAPHX_GUARD_OPERATORS_TRANSPOSE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
transpose
{
std
::
vector
<
int64_t
>
dims
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
dims
,
"dims"
));
}
std
::
string
name
()
const
{
return
"transpose"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
input
=
inputs
.
at
(
0
);
auto
input_lens
=
input
.
lens
();
auto
input_strides
=
input
.
strides
();
auto
t
=
input
.
type
();
if
(
dims
.
size
()
!=
input_lens
.
size
())
{
MIGRAPHX_THROW
(
"Permutation has wrong number of axes"
);
}
std
::
vector
<
int64_t
>
axes
(
dims
.
size
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
if
(
!
std
::
is_permutation
(
axes
.
begin
(),
axes
.
end
(),
dims
.
begin
()))
{
MIGRAPHX_THROW
(
"Invalid permutation"
);
}
std
::
vector
<
size_t
>
output_lens
(
input_lens
.
size
());
std
::
vector
<
size_t
>
output_strides
(
input_lens
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
output_lens
.
size
();
i
++
)
{
output_lens
[
i
]
=
input_lens
[
dims
[
i
]];
output_strides
[
i
]
=
input_strides
[
dims
[
i
]];
}
return
{
t
,
output_lens
,
output_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/unary.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_UNARY_HPP
#define MIGRAPHX_GUARD_OPERATORS_UNARY_HPP
#include <migraphx/op/name.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
template
<
class
Derived
>
struct
unary
:
op_name
<
Derived
>
{
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
if
(
s
.
packed
())
{
return
s
;
}
else
{
return
{
s
.
type
(),
s
.
lens
()};
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
result
.
visit
([
&
](
auto
output
)
{
args
[
0
].
visit
([
&
](
auto
input
)
{
if
(
input
.
get_shape
().
packed
())
{
std
::
transform
(
input
.
begin
(),
input
.
end
(),
output
.
begin
(),
static_cast
<
const
Derived
&>
(
*
this
).
apply
());
return
result
;
}
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
static_cast
<
const
Derived
&>
(
*
this
).
apply
()(
input
(
idx
.
begin
(),
idx
.
end
()));
});
return
result
;
});
});
return
result
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/unsqueeze.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_UNSQUEEZE_HPP
#define MIGRAPHX_GUARD_OPERATORS_UNSQUEEZE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
unsqueeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard_or_scalar
();
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
input_shape
.
scalar
())
return
shape
{
type
,
old_lens
};
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
size_t
p
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
new_size
;
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
!=
axes
.
end
())
{
new_lens
[
i
]
=
1
;
}
else
{
new_lens
[
i
]
=
old_lens
[
p
++
];
}
}
return
shape
{
type
,
new_lens
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/operation.hpp
View file @
eb0d8fee
...
...
@@ -49,7 +49,7 @@ struct operation
argument
compute
(
context
&
ctx
,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
input
)
const
;
/// An optional method to return which argument the output will alias. If
/// there is no aliased output then -1 can be returned.
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
;
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
;
/// An optional stream operator to print the operation. When this is not
/// implemented, it will just print the operation's name.
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
operation
&
op
);
...
...
@@ -69,7 +69,7 @@ auto operator<<(std::ostream& os, const T& x) -> decltype(os << x.name())
{
os
<<
x
.
name
();
char
delim
=
'['
;
reflect_each
(
x
,
[
&
](
auto
&
y
,
auto
name
)
{
reflect_each
(
x
,
[
&
](
auto
&
&
y
,
auto
name
)
{
os
<<
delim
;
os
<<
name
<<
"="
;
stream_write_value
(
os
,
y
);
...
...
@@ -87,6 +87,8 @@ namespace operation_equal {
template
<
class
T
,
class
U
>
auto
operator
==
(
const
T
&
x
,
const
U
&
y
)
->
decltype
(
x
.
name
()
==
y
.
name
())
{
static_assert
(
is_reflectable
<
T
>
{}
or
sizeof
(
T
)
<=
1
,
"Missing equality operator or reflect method."
);
if
(
x
.
name
()
!=
y
.
name
())
return
false
;
const
auto
&
yy
=
any_cast
<
T
>
(
y
);
...
...
@@ -175,7 +177,7 @@ auto is_context_free_op(const T& x) -> decltype(is_context_free_op(
}
template
<
class
T
>
in
t
output_alias_op
(
rank
<
0
>
,
const
T
&
,
const
std
::
vector
<
shape
>&
)
std
::
ptrdiff_
t
output_alias_op
(
rank
<
0
>
,
const
T
&
,
const
std
::
vector
<
shape
>&
)
{
return
-
1
;
}
...
...
@@ -188,7 +190,7 @@ auto output_alias_op(rank<1>, const T& x, const std::vector<shape>& shapes)
}
template
<
class
T
>
in
t
output_alias_op
(
const
T
&
x
,
const
std
::
vector
<
shape
>&
shapes
)
std
::
ptrdiff_
t
output_alias_op
(
const
T
&
x
,
const
std
::
vector
<
shape
>&
shapes
)
{
return
output_alias_op
(
rank
<
1
>
{},
x
,
shapes
);
}
...
...
@@ -239,7 +241,7 @@ auto has_finalize_op(const T&) -> decltype(has_finalize_op(rank<1>{},
* std::string name() const;
* bool is_context_free() const;
* bool has_finalize() const;
*
in
t output_alias(const std::vector<shape>& input) const;
*
std::ptrdiff_
t output_alias(const std::vector<shape>& input) const;
* void finalize(context& ctx,const shape& output,const std::vector<shape>& input) ;
* shape compute_shape(const std::vector<shape>& input) const;
* argument compute(context& ctx,const shape& output,const std::vector<argument>& input) const;
...
...
@@ -325,7 +327,7 @@ struct operation
return
(
*
this
).
private_detail_te_get_handle
().
has_finalize
();
}
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
{
assert
((
*
this
).
private_detail_te_handle_mem_var
);
return
(
*
this
).
private_detail_te_get_handle
().
output_alias
(
input
);
...
...
@@ -380,10 +382,10 @@ struct operation
virtual
std
::
shared_ptr
<
private_detail_te_handle_base_type
>
clone
()
const
=
0
;
virtual
const
std
::
type_info
&
type
()
const
=
0
;
virtual
std
::
string
name
()
const
=
0
;
virtual
bool
is_context_free
()
const
=
0
;
virtual
bool
has_finalize
()
const
=
0
;
virtual
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
virtual
std
::
string
name
()
const
=
0
;
virtual
bool
is_context_free
()
const
=
0
;
virtual
bool
has_finalize
()
const
=
0
;
virtual
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
virtual
void
finalize
(
context
&
ctx
,
const
shape
&
output
,
const
std
::
vector
<
shape
>&
input
)
=
0
;
virtual
shape
compute_shape
(
const
std
::
vector
<
shape
>&
input
)
const
=
0
;
...
...
@@ -432,7 +434,7 @@ struct operation
bool
has_finalize
()
const
override
{
return
has_finalize_op
(
private_detail_te_value
);
}
in
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
override
std
::
ptrdiff_
t
output_alias
(
const
std
::
vector
<
shape
>&
input
)
const
override
{
return
output_alias_op
(
private_detail_te_value
,
input
);
...
...
src/include/migraphx/operators.hpp
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_OPERATORS_HPP
#define MIGRAPHX_GUARD_OPERATORS_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
enum
padding_mode_t
{
default_
,
// NOLINT
same
,
valid
};
struct
not_computable
{
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
MIGRAPHX_THROW
(
"not computable"
);
}
};
struct
batch_norm_inference
{
float
epsilon
=
1.0e-6
f
;
float
momentum
=
0.9
f
;
std
::
string
name
()
const
{
return
"batch_norm_inference"
;
}
enum
bn_infer_mode_t
{
per_activation
,
spatial
,
};
bn_infer_mode_t
bn_mode
=
spatial
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
epsilon
,
"epsilon"
),
f
(
self
.
momentum
,
"momentum"
),
f
(
self
.
bn_mode
,
"bn_mode"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
5
);
return
inputs
.
front
();
}
};
struct
lrn
{
float
alpha
=
0.0001
;
float
beta
=
0.75
;
float
bias
=
1.0
;
int
size
=
1
;
std
::
string
name
()
const
{
return
"lrn"
;
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
),
f
(
self
.
beta
,
"beta"
),
f
(
self
.
bias
,
"bias"
),
f
(
self
.
size
,
"size"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
};
struct
convolution
{
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
dilation
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
int
group
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
padding
,
"padding"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
group
,
"group"
));
}
std
::
string
name
()
const
{
return
"convolution"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
().
same_ndims
().
only_dims
(
4
);
const
shape
&
input
=
inputs
.
at
(
0
);
const
shape
&
weights
=
inputs
.
at
(
1
);
auto
t
=
input
.
type
();
if
(
padding_mode
==
default_
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
2
]
-
(
1
+
dilation
[
0
]
*
(
weights
.
lens
()[
2
]
-
1
))
+
2
*
padding
[
0
])
/
stride
[
0
]
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
3
]
-
(
1
+
dilation
[
1
]
*
(
weights
.
lens
()[
3
]
-
1
))
+
2
*
padding
[
1
])
/
stride
[
1
]
+
1
)),
}};
}
else
if
(
padding_mode
==
same
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
])
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
])
/
stride
[
1
]))}};
}
else
if
(
padding_mode
==
valid
)
{
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
]
-
weights
.
lens
()[
2
]
+
1
)
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
]
-
weights
.
lens
()[
3
]
+
1
)
/
stride
[
1
]))}};
}
else
{
MIGRAPHX_THROW
(
"Invalid padding mode"
);
}
}
};
struct
im2col
{
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
dilation
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
padding
,
"padding"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
));
}
std
::
string
name
()
const
{
return
"im2col"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input
=
inputs
[
0
];
auto
weights
=
inputs
[
1
];
auto
batch_size
=
input
.
lens
()[
0
];
auto
input_channels
=
weights
.
lens
()[
1
];
auto
kernel_height
=
weights
.
lens
()[
2
];
auto
kernel_width
=
weights
.
lens
()[
3
];
check_shapes
{
inputs
,
*
this
}.
has
(
2
);
if
(
batch_size
!=
1
)
MIGRAPHX_THROW
(
"im2col only support batch_size 1"
);
auto
output_height
=
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
2
]
-
(
1
+
dilation
[
0
]
*
(
kernel_height
-
1
))
+
2
*
padding
[
0
])
/
stride
[
0
]
+
1
));
auto
output_width
=
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
3
]
-
(
1
+
dilation
[
1
]
*
(
kernel_width
-
1
))
+
2
*
padding
[
1
])
/
stride
[
1
]
+
1
));
auto
channels_col
=
kernel_height
*
kernel_width
*
input_channels
;
return
{
input
.
type
(),
{
output_height
*
output_width
,
channels_col
}};
}
};
struct
pooling
{
std
::
string
mode
=
"average"
;
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
lengths
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
mode
,
"mode"
),
f
(
self
.
padding
,
"padding"
),
f
(
self
.
padding
,
"padding_mode"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
lengths
,
"lengths"
));
}
std
::
string
name
()
const
{
return
"pooling"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
only_dims
(
4
);
const
shape
&
input
=
inputs
.
at
(
0
);
auto
t
=
input
.
type
();
assert
(
lengths
[
0
]
<=
(
input
.
lens
()[
2
]
+
2
*
padding
[
0
]));
assert
(
lengths
[
1
]
<=
(
input
.
lens
()[
3
]
+
2
*
padding
[
1
]));
if
(
padding_mode
==
default_
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
2
]
+
2
*
padding
[
0
]
-
lengths
[
0
])
/
static_cast
<
float
>
(
stride
[
0
])))
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
3
]
+
2
*
padding
[
1
]
-
lengths
[
1
])
/
static_cast
<
float
>
(
stride
[
1
])))
+
1
)),
}};
}
else
if
(
padding_mode
==
same
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
2
])
/
stride
[
0
])),
static_cast
<
std
::
size_t
>
(
std
::
ceil
(
static_cast
<
double
>
(
input
.
lens
()[
3
])
/
stride
[
1
]))}};
}
else
if
(
padding_mode
==
valid
)
{
return
{
t
,
{
input
.
lens
()[
0
],
input
.
lens
()[
1
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
2
]
-
lengths
[
0
])
/
static_cast
<
float
>
(
stride
[
0
])))
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
std
::
ptrdiff_t
(
std
::
floor
((
input
.
lens
()[
3
]
-
lengths
[
1
])
/
static_cast
<
float
>
(
stride
[
1
])))
+
1
)),
}};
}
else
{
MIGRAPHX_THROW
(
"Invalid padding mode"
);
}
}
};
struct
leaky_relu
{
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
};
struct
elu
{
std
::
string
name
()
const
{
return
"elu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
};
struct
transpose
{
std
::
vector
<
int64_t
>
dims
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
dims
,
"dims"
));
}
std
::
string
name
()
const
{
return
"transpose"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
input
=
inputs
.
at
(
0
);
auto
input_lens
=
input
.
lens
();
auto
input_strides
=
input
.
strides
();
auto
t
=
input
.
type
();
if
(
dims
.
size
()
!=
input_lens
.
size
())
{
MIGRAPHX_THROW
(
"Permutation has wrong number of axes"
);
}
std
::
vector
<
int64_t
>
axes
(
dims
.
size
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
0
);
if
(
!
std
::
is_permutation
(
axes
.
begin
(),
axes
.
end
(),
dims
.
begin
()))
{
MIGRAPHX_THROW
(
"Invalid permutation"
);
}
std
::
vector
<
size_t
>
output_lens
(
input_lens
.
size
());
std
::
vector
<
size_t
>
output_strides
(
input_lens
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
output_lens
.
size
();
i
++
)
{
output_lens
[
i
]
=
input_lens
[
dims
[
i
]];
output_strides
[
i
]
=
input_strides
[
dims
[
i
]];
}
return
{
t
,
output_lens
,
output_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The contiguous operator takes a non-standard input tensor and returns
/// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
/// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
/// during the transpose operation; only it's shape lengths and strides were changed.
/// This leaves the tensor in a non-standard form. The contiguous operator copies the
/// underlying data such that resulting tensor is returned to a standard form.
struct
contiguous
{
std
::
string
name
()
const
{
return
"contiguous"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
lens
=
inputs
.
at
(
0
).
lens
();
auto
t
=
inputs
.
at
(
0
).
type
();
return
{
t
,
lens
};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
assert
(
output_shape
.
standard
());
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
idx
.
begin
(),
idx
.
end
());
});
});
return
result
;
}
};
struct
concat
{
std
::
size_t
axis
=
0
;
std
::
string
name
()
const
{
return
"concat"
;
}
std
::
vector
<
std
::
size_t
>
compute_offsets
(
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
std
::
vector
<
std
::
size_t
>
offsets
;
std
::
vector
<
std
::
size_t
>
offset
(
args
[
0
].
get_shape
().
lens
().
size
(),
0
);
offset
[
axis
]
=
0
;
for
(
const
auto
&
arg
:
args
)
{
offsets
.
push_back
(
output_shape
.
index
(
offset
));
offset
[
axis
]
+=
arg
.
get_shape
().
lens
()[
axis
];
}
return
offsets
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
if
(
inputs
.
empty
())
{
MIGRAPHX_THROW
(
"Number of input tensors should exceed 0"
);
}
const
auto
&
first_shape_lens
=
inputs
.
front
().
lens
();
const
auto
&
type
=
inputs
.
front
().
type
();
for
(
std
::
size_t
l
=
0
;
l
<
first_shape_lens
.
size
();
l
++
)
{
if
(
l
!=
axis
)
{
if
(
!
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
auto
s
)
{
return
s
.
lens
()[
l
]
==
first_shape_lens
[
l
];
}))
{
MIGRAPHX_THROW
(
"Non-axis dimensions should match"
);
}
}
}
std
::
size_t
new_dim_axis
=
0
;
for
(
const
auto
&
input
:
inputs
)
{
const
auto
&
lens
=
input
.
lens
();
new_dim_axis
+=
lens
[
axis
];
}
std
::
vector
<
std
::
size_t
>
new_lens
;
std
::
copy
(
first_shape_lens
.
begin
(),
first_shape_lens
.
end
(),
std
::
back_inserter
(
new_lens
));
new_lens
[
axis
]
=
new_dim_axis
;
return
{
type
,
new_lens
};
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
std
::
vector
<
std
::
size_t
>
coffsets
=
compute_offsets
(
output_shape
,
args
);
for
(
std
::
size_t
l
=
0
;
l
<
args
.
size
();
l
++
)
{
auto
argl
=
args
[
l
];
std
::
size_t
nelements
=
argl
.
get_shape
().
elements
();
visit_all
(
result
,
argl
)([
&
](
auto
output
,
auto
input
)
{
auto
slice_shape
=
shape
{
output_shape
.
type
(),
input
.
get_shape
().
lens
(),
output_shape
.
strides
()};
auto
slice
=
make_view
(
slice_shape
,
output
.
data
()
+
coffsets
[
l
]);
// cppcheck-suppress useStlAlgorithm
for
(
std
::
size_t
i
=
0
;
i
<
nelements
;
i
++
)
{
slice
[
i
]
=
input
[
i
];
}
});
}
return
result
;
}
};
struct
slice
{
std
::
vector
<
int64_t
>
axes
;
std
::
vector
<
int64_t
>
starts
;
std
::
vector
<
int64_t
>
ends
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
),
f
(
self
.
starts
,
"starts"
),
f
(
self
.
ends
,
"ends"
));
}
std
::
string
name
()
const
{
return
"slice"
;
}
auto
fix_index
(
const
std
::
vector
<
std
::
size_t
>&
lens
,
std
::
size_t
axis
,
int64_t
index
)
const
{
int64_t
r
=
std
::
min
(
index
,
static_cast
<
int64_t
>
(
lens
[
axis
]));
if
(
r
<
0
)
r
+=
lens
[
axis
];
return
std
::
size_t
(
r
);
}
auto
compute_offset
(
const
shape
&
s
)
const
{
const
std
::
vector
<
std
::
size_t
>&
lens
=
s
.
lens
();
const
std
::
vector
<
std
::
size_t
>&
strides
=
s
.
strides
();
auto
offset
=
0
;
if
(
!
axes
.
empty
())
{
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
offset
+=
fix_index
(
lens
,
axis
,
starts
[
i
])
*
strides
[
axis
];
}
}
else
{
for
(
std
::
size_t
axis
=
0
;
axis
<
lens
.
size
();
axis
++
)
{
offset
+=
fix_index
(
lens
,
axis
,
starts
[
axis
])
*
strides
[
axis
];
}
}
return
offset
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
t
=
input_shape
.
type
();
const
auto
&
old_lens
=
input_shape
.
lens
();
const
auto
&
old_strides
=
input_shape
.
strides
();
if
(
starts
.
size
()
!=
axes
.
size
()
||
axes
.
size
()
!=
ends
.
size
())
{
MIGRAPHX_THROW
(
"inconsistent sizes"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
=
old_lens
;
for
(
std
::
size_t
i
=
0
;
i
<
axes
.
size
();
i
++
)
{
auto
axis
=
axes
[
i
];
new_lens
[
axis
]
=
fix_index
(
old_lens
,
axis
,
ends
[
i
])
-
fix_index
(
old_lens
,
axis
,
starts
[
i
]);
}
return
shape
{
t
,
new_lens
,
old_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
auto
input
=
args
[
0
];
auto
offset
=
compute_offset
(
input
.
get_shape
())
*
output_shape
.
type_size
();
return
{
std
::
move
(
output_shape
),
[
=
]
{
return
input
.
data
()
+
offset
;
}};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
squeeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"squeeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
std
::
any_of
(
axes
.
begin
(),
axes
.
end
(),
[
&
](
auto
axis
)
{
return
input_shape
.
lens
()[
axis
]
!=
1
;
}))
{
MIGRAPHX_THROW
(
"squeeze axis dimension should be equal to 1"
);
}
std
::
vector
<
std
::
size_t
>
new_lens
;
if
(
axes
.
empty
())
{
std
::
copy_if
(
old_lens
.
begin
(),
old_lens
.
end
(),
std
::
back_inserter
(
new_lens
),
[](
auto
len
)
{
return
len
!=
1
;
});
}
else
{
for
(
std
::
size_t
i
=
0
;
i
<
old_lens
.
size
();
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
==
axes
.
end
())
{
new_lens
.
push_back
(
old_lens
[
i
]);
}
}
}
return
shape
{
type
,
new_lens
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
unsqueeze
{
std
::
vector
<
int64_t
>
axes
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axes
,
"axes"
));
}
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
size_t
p
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
new_size
;
i
++
)
{
if
(
std
::
find
(
axes
.
begin
(),
axes
.
end
(),
i
)
!=
axes
.
end
())
{
new_lens
[
i
]
=
1
;
}
else
{
new_lens
[
i
]
=
old_lens
[
p
++
];
}
}
return
shape
{
type
,
new_lens
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
reshape
{
std
::
vector
<
int64_t
>
dims
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
dims
,
"dims"
));
}
std
::
string
name
()
const
{
return
"reshape"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
dims
.
begin
(),
dims
.
end
());
auto
n_neg_dims
=
std
::
count
(
dims
.
begin
(),
dims
.
end
(),
-
1
);
if
(
n_neg_dims
>
1
)
MIGRAPHX_THROW
(
"Dimensions for reshape can only have one -1 dim"
);
for
(
std
::
size_t
i
=
0
;
i
<
dims
.
size
();
i
++
)
{
if
(
dims
[
i
]
==
0
)
rdims
[
i
]
=
idims
[
i
];
// since rdims using size_t type, -1 is the max value
// is size_t that cause later compuation incorrect
if
(
dims
[
i
]
==
-
1
)
rdims
[
i
]
=
1
;
}
if
(
n_neg_dims
>
0
)
{
size_t
missing_dim
=
inputs
.
front
().
elements
()
/
std
::
accumulate
(
rdims
.
begin
(),
rdims
.
end
(),
1
,
std
::
multiplies
<
int64_t
>
());
for
(
std
::
size_t
i
=
0
;
i
<
rdims
.
size
();
i
++
)
{
if
(
dims
[
i
]
==
-
1
)
rdims
[
i
]
=
missing_dim
;
}
}
shape
s
{
inputs
.
front
().
type
(),
rdims
};
if
(
s
.
elements
()
!=
inputs
.
front
().
elements
())
MIGRAPHX_THROW
(
"Wrong number of elements for reshape"
);
return
s
;
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
pad
{
std
::
vector
<
int64_t
>
pads
;
float
value
=
0.0
f
;
enum
pad_op_mode_t
{
constant_pad
,
reflect_pad
,
edge_pad
};
pad_op_mode_t
mode
=
constant_pad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
mode
,
"mode"
),
f
(
self
.
pads
,
"pads"
),
f
(
self
.
value
,
"value"
));
}
std
::
string
name
()
const
{
return
"pad"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
&&
idims
=
inputs
.
front
().
lens
();
std
::
vector
<
std
::
size_t
>
rdims
(
idims
.
begin
(),
idims
.
end
());
std
::
size_t
num_dims
=
rdims
.
size
();
for
(
std
::
size_t
i
=
0
;
i
<
num_dims
;
i
++
)
{
rdims
[
i
]
+=
pads
[
i
]
+
pads
[
i
+
num_dims
];
}
shape
s
{
inputs
.
front
().
type
(),
rdims
};
return
s
;
}
};
struct
as_shape
{
shape
s
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
));
}
std
::
string
name
()
const
{
return
"as_shape"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
assert
(
inputs
.
front
().
elements
()
==
s
.
elements
());
return
s
;
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
gather
{
int
axis
=
0
;
std
::
string
name
()
const
{
return
"gather"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
);
auto
lens
=
inputs
[
0
].
lens
();
int
n_dim
=
static_cast
<
int
>
(
lens
.
size
());
if
(
axis
>=
n_dim
||
axis
<
-
n_dim
)
{
MIGRAPHX_THROW
(
"Gather: axis is out of range."
);
}
// negative axis means counting dimensions from back
int
axis_index
=
(
axis
<
0
)
?
(
n_dim
+
axis
)
:
axis
;
auto
type
=
inputs
[
0
].
type
();
lens
[
axis_index
]
=
inputs
[
1
].
elements
();
return
{
type
,
lens
};
}
template
<
class
T
>
void
compute_index
(
const
T
&
out_idx
,
const
int
axis_index
,
const
std
::
vector
<
std
::
size_t
>&
vec_indices
,
const
std
::
size_t
max_dim
,
T
&
in_idx
)
const
{
in_idx
=
out_idx
;
std
::
size_t
idx
=
vec_indices
.
at
(
out_idx
[
axis_index
]);
if
(
idx
>=
max_dim
)
{
MIGRAPHX_THROW
(
"Gather: indices are out of range in input tensor"
);
}
in_idx
[
axis_index
]
=
idx
;
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
// negative axis means counting dimensions from back
int
axis_index
=
(
axis
<
0
)
?
(
output_shape
.
lens
().
size
()
+
axis
)
:
axis
;
// max dimension in axis
std
::
size_t
max_dim
=
args
[
0
].
get_shape
().
lens
()[
axis_index
];
std
::
vector
<
std
::
size_t
>
vec_indices
;
args
[
1
].
visit
([
&
](
auto
indices
)
{
vec_indices
.
assign
(
indices
.
begin
(),
indices
.
end
());
});
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
std
::
vector
<
std
::
size_t
>
in_idx
;
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
this
->
compute_index
(
idx
,
axis_index
,
vec_indices
,
max_dim
,
in_idx
);
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
in_idx
.
begin
(),
in_idx
.
end
());
});
});
return
result
;
}
};
struct
dot
{
float
alpha
=
1.0
;
float
beta
=
0.0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
),
f
(
self
.
beta
,
"beta"
));
}
std
::
string
name
()
const
{
return
"dot"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
();
const
shape
&
a
=
inputs
.
at
(
0
);
const
shape
&
b
=
inputs
.
at
(
1
);
auto
t
=
a
.
type
();
if
(
a
.
lens
()[
1
]
!=
b
.
lens
()[
0
])
MIGRAPHX_THROW
(
"Inner dimensions do not match: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
return
{
t
,
{
a
.
lens
()[
0
],
b
.
lens
()[
1
]}};
}
};
struct
unary
{
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
return
inputs
.
at
(
0
);
}
};
struct
identity
{
std
::
string
name
()
const
{
return
"identity"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
return
inputs
.
at
(
0
);
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
abs
:
unary
{
std
::
string
name
()
const
{
return
"abs"
;
}
};
struct
exp
:
unary
{
std
::
string
name
()
const
{
return
"exp"
;
}
};
struct
log
:
unary
{
std
::
string
name
()
const
{
return
"log"
;
}
};
struct
sin
:
unary
{
std
::
string
name
()
const
{
return
"sin"
;
}
};
struct
cos
:
unary
{
std
::
string
name
()
const
{
return
"cos"
;
}
};
struct
tan
:
unary
{
std
::
string
name
()
const
{
return
"tan"
;
}
};
struct
asin
:
unary
{
std
::
string
name
()
const
{
return
"asin"
;
}
};
struct
acos
:
unary
{
std
::
string
name
()
const
{
return
"acos"
;
}
};
struct
atan
:
unary
{
std
::
string
name
()
const
{
return
"atan"
;
}
};
struct
sinh
:
unary
{
std
::
string
name
()
const
{
return
"sinh"
;
}
};
struct
cosh
:
unary
{
std
::
string
name
()
const
{
return
"cosh"
;
}
};
struct
tanh
:
unary
{
std
::
string
name
()
const
{
return
"tanh"
;
}
};
struct
sigmoid
:
unary
{
std
::
string
name
()
const
{
return
"sigmoid"
;
}
};
struct
neg
:
unary
{
std
::
string
name
()
const
{
return
"neg"
;
}
};
struct
relu
:
unary
{
std
::
string
name
()
const
{
return
"relu"
;
}
};
struct
softmax
{
std
::
string
name
()
const
{
return
"softmax"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
4
);
return
inputs
.
at
(
0
);
}
};
struct
flatten
{
uint64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"flatten"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
auto
&&
lens
=
inputs
.
front
().
lens
();
if
(
axis
>
lens
.
size
())
{
MIGRAPHX_THROW
(
"axis for flatten must be less than tensor rank"
);
}
auto
x
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
auto
y
=
std
::
accumulate
(
lens
.
begin
()
+
axis
,
lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
return
{
inputs
.
at
(
0
).
type
(),
{
x
,
y
}};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
front
().
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
struct
broadcast
{
uint64_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
shape
broadcast_shape
;
std
::
string
name
()
const
{
return
"broadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
t
=
inputs
.
at
(
0
).
type
();
auto
input
=
inputs
.
at
(
0
);
std
::
vector
<
size_t
>
bcast_strides
(
broadcast_shape
.
lens
().
size
(),
0
);
if
(
std
::
all_of
(
broadcast_shape
.
lens
().
cbegin
(),
broadcast_shape
.
lens
().
cend
(),
[
&
](
auto
x
)
{
return
x
==
1
;
}))
{
if
(
axis
!=
0
)
MIGRAPHX_THROW
(
"when broadcasting tensor of size 1, axis should be 0"
);
return
{
t
,
broadcast_shape
.
lens
(),
std
::
move
(
bcast_strides
)};
}
else
{
assert
(
broadcast_shape
.
lens
().
size
()
-
axis
>=
input
.
lens
().
size
());
if
(
!
std
::
equal
(
input
.
lens
().
begin
(),
input
.
lens
().
end
(),
broadcast_shape
.
lens
().
begin
()
+
axis
))
MIGRAPHX_THROW
(
"when broadcasting success sizes must match"
);
std
::
copy
(
input
.
strides
().
begin
(),
input
.
strides
().
end
(),
bcast_strides
.
begin
()
+
axis
);
return
{
t
,
broadcast_shape
.
lens
(),
std
::
move
(
bcast_strides
)};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
multibroadcast
{
std
::
vector
<
std
::
size_t
>
output_lens
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
output_lens
,
"output_lens"
));
}
std
::
string
name
()
const
{
return
"multibroadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
auto
input
=
inputs
.
at
(
0
);
if
(
input
.
lens
().
empty
())
MIGRAPHX_THROW
(
"inputs dimensions should be > 0"
);
if
(
input
.
lens
().
size
()
>
output_lens
.
size
())
MIGRAPHX_THROW
(
"inputs dimensions should <= output size"
);
std
::
vector
<
size_t
>
bcast_strides
(
output_lens
.
size
(),
0
);
auto
offset
=
output_lens
.
size
()
-
input
.
lens
().
size
();
for
(
int
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
output_lens
[
i
+
offset
]
==
input
.
lens
()[
i
])
{
bcast_strides
[
i
+
offset
]
=
input
.
strides
()[
i
];
}
}
return
{
t
,
output_lens
,
bcast_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
scalar
{
shape
scalar_bcast
;
std
::
string
name
()
const
{
return
"scalar"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
assert
(
check_shapes
{
inputs
}.
has
(
1
).
only_dims
(
1
).
size
()
==
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
std
::
vector
<
std
::
size_t
>
strides
(
scalar_bcast
.
lens
().
size
(),
0
);
return
{
t
,
scalar_bcast
.
lens
(),
strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
{
std
::
move
(
output_shape
),
std
::
move
(
args
.
at
(
0
).
data
)};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
binary
{
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
2
).
same_type
().
same_dims
();
auto
t
=
inputs
.
at
(
0
).
type
();
auto
lens
=
inputs
.
at
(
0
).
lens
();
return
{
t
,
lens
};
}
};
struct
add
:
binary
{
std
::
string
name
()
const
{
return
"add"
;
}
};
struct
sub
:
binary
{
std
::
string
name
()
const
{
return
"sub"
;
}
};
struct
mul
:
binary
{
std
::
string
name
()
const
{
return
"mul"
;
}
};
struct
div
:
binary
{
std
::
string
name
()
const
{
return
"div"
;
}
};
struct
max
:
binary
{
std
::
string
name
()
const
{
return
"max"
;
}
};
struct
min
:
binary
{
std
::
string
name
()
const
{
return
"min"
;
}
};
struct
load
{
shape
s
;
std
::
size_t
offset
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
),
f
(
self
.
offset
,
"offset"
));
}
std
::
string
name
()
const
{
return
"load"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
1
);
return
s
;
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
{
s
,
args
[
0
].
data
()
+
offset
};
}
int
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
struct
outline
{
shape
s
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
));
}
std
::
string
name
()
const
{
return
"outline"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
0
);
return
s
;
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
return
{
s
,
nullptr
};
}
};
// indicate rnn computation direction
enum
class
rnn_direction
{
forward
,
reverse
,
bidirectional
,
};
struct
rnn
{
std
::
size_t
hidden_size
=
1
;
std
::
vector
<
operation
>
actv_funcs
{
tanh
{},
tanh
{}};
rnn_direction
direction
=
rnn_direction
::
forward
;
float
clip
=
0.0
f
;
std
::
string
name
()
const
{
return
"rnn"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
in_dims
=
inputs
[
0
].
lens
();
auto
hidden_dims
=
inputs
[
2
].
lens
();
if
(
hidden_size
!=
hidden_dims
[
2
])
{
MIGRAPHX_THROW
(
"RNN: hidden size mismatch in attribute and input"
);
}
std
::
size_t
num_directions
=
1
;
if
(
direction
==
rnn_direction
::
bidirectional
)
{
num_directions
=
2
;
}
if
(
num_directions
!=
hidden_dims
[
0
])
{
MIGRAPHX_THROW
(
"RNN: num_direction mismatch in attribute and input"
);
}
std
::
vector
<
std
::
size_t
>
out_dims
(
in_dims
);
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
num_directions
);
out_dims
.
back
()
=
hidden_size
;
return
{
inputs
[
0
].
type
(),
out_dims
};
}
};
struct
rnn_last_output
{
std
::
string
name
()
const
{
return
"rnn_last_output"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
dims
=
inputs
[
0
].
lens
();
// remove the first dimension, remaing are output shape
dims
.
erase
(
dims
.
begin
());
return
{
inputs
[
0
].
type
(),
dims
};
}
};
struct
gru
{
std
::
size_t
hidden_size
=
1
;
std
::
vector
<
operation
>
actv_funcs
{
sigmoid
{},
tanh
{}};
rnn_direction
direction
=
rnn_direction
::
forward
;
float
clip
=
0.0
f
;
int
linear_before_reset
=
0
;
std
::
string
name
()
const
{
return
"gru"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
in_dims
=
inputs
[
0
].
lens
();
auto
hidden_dims
=
inputs
[
2
].
lens
();
if
(
hidden_size
!=
hidden_dims
[
2
])
{
MIGRAPHX_THROW
(
"GRU: hidden size mismatch in attribute and input"
);
}
std
::
size_t
num_directions
=
1
;
if
(
direction
==
rnn_direction
::
bidirectional
)
{
num_directions
=
2
;
}
if
(
num_directions
!=
hidden_dims
[
0
])
{
MIGRAPHX_THROW
(
"GRU: num_direction does not match the direction attribute"
);
}
std
::
vector
<
std
::
size_t
>
out_dims
(
in_dims
);
out_dims
.
insert
(
out_dims
.
begin
()
+
1
,
num_directions
);
out_dims
.
back
()
=
hidden_size
;
return
{
inputs
[
0
].
type
(),
out_dims
};
}
};
struct
undefined
{
std
::
string
name
()
const
{
return
"undefined"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
0
);
return
{};
}
argument
compute
(
const
shape
&
,
const
std
::
vector
<
argument
>&
)
const
{
return
{{},
nullptr
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#include <migraphx/op/abnormal_ops.hpp>
#include <migraphx/op/abs.hpp>
#include <migraphx/op/acos.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/asin.hpp>
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/atan.hpp>
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/binary.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/clip.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/concat.hpp>
#include <migraphx/op/contiguous.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/cosh.hpp>
#include <migraphx/op/cos.hpp>
#include <migraphx/op/div.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/exp.hpp>
#include <migraphx/op/flatten.hpp>
#include <migraphx/op/gather.hpp>
#include <migraphx/op/gru.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/load.hpp>
#include <migraphx/op/log.hpp>
#include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/lstm.hpp>
#include <migraphx/op/max.hpp>
#include <migraphx/op/min.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/op/neg.hpp>
#include <migraphx/op/outline.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/relu.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/rnn.hpp>
#include <migraphx/op/rnn_last_cell_output.hpp>
#include <migraphx/op/rnn_last_output.hpp>
#include <migraphx/op/scalar.hpp>
#include <migraphx/op/sigmoid.hpp>
#include <migraphx/op/sinh.hpp>
#include <migraphx/op/sin.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/op/softmax.hpp>
#include <migraphx/op/squeeze.hpp>
#include <migraphx/op/sub.hpp>
#include <migraphx/op/tanh.hpp>
#include <migraphx/op/tan.hpp>
#include <migraphx/op/transpose.hpp>
#include <migraphx/op/unary.hpp>
#include <migraphx/op/unsqueeze.hpp>
#endif
src/include/migraphx/pass_manager.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_PASS_MANAGER_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_PASS_MANAGER_HPP
#include <list>
#include <unordered_map>
#include <migraphx/operation.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/builtin.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/target.hpp>
#include <migraphx/tracer.hpp>
#include <migraphx/env.hpp>
#include <migraphx/config.hpp>
#include <algorithm>
#include <iostream>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
void
run_passes
(
program
&
prog
,
const
std
::
vector
<
pass
>&
passes
,
tracer
trace
=
tracer
{});
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/program.hpp
View file @
eb0d8fee
...
...
@@ -9,6 +9,7 @@
#include <migraphx/instruction_ref.hpp>
#include <migraphx/target.hpp>
#include <migraphx/tracer.hpp>
#include <migraphx/env.hpp>
#include <migraphx/config.hpp>
#include <algorithm>
#include <iostream>
...
...
@@ -16,6 +17,9 @@
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TRACE_COMPILE
)
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TRACE_EVAL
)
struct
program_impl
;
const
operation
&
get_operation
(
instruction_ref
ins
);
...
...
@@ -26,8 +30,16 @@ const operation& get_operation(instruction_ref ins);
struct
program
{
program
();
// move constructor
program
(
program
&&
)
noexcept
;
program
&
operator
=
(
program
&&
)
noexcept
;
// copy constructor
program
(
const
program
&
);
// copy assignment operator
program
&
operator
=
(
program
);
~
program
()
noexcept
;
using
parameter_map
=
std
::
unordered_map
<
std
::
string
,
argument
>
;
...
...
@@ -104,13 +116,19 @@ struct program
void
debug_print
()
const
;
void
debug_print
(
instruction_ref
ins
)
const
;
void
debug_print
(
const
std
::
vector
<
instruction_ref
>&
inss
)
const
;
void
print_graph
(
std
::
ostream
&
os
)
const
;
void
dry_run
(
parameter_map
params
)
const
;
void
annotate
(
std
::
ostream
&
os
,
std
::
function
<
void
(
instruction_ref
)
>
a
)
const
;
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
program
&
p
);
friend
bool
operator
==
(
const
program
&
x
,
const
program
&
y
);
friend
bool
operator
!=
(
const
program
&
x
,
const
program
&
y
)
{
return
!
(
x
==
y
);
}
private:
void
assign
(
const
program
&
p
);
private:
std
::
unique_ptr
<
program_impl
>
impl
;
};
...
...
src/include/migraphx/
constant_
propagate.hpp
→
src/include/migraphx/propagate
_constant
.hpp
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_RTGLIB_
CONSTANT_
PROPAGATE_HPP
#define MIGRAPHX_GUARD_RTGLIB_
CONSTANT_
PROPAGATE_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_PROPAGATE
_CONSTANT
_HPP
#define MIGRAPHX_GUARD_RTGLIB_PROPAGATE
_CONSTANT
_HPP
#include <string>
#include <migraphx/config.hpp>
...
...
@@ -12,9 +12,9 @@ struct program;
/**
* Replace instructions which take all literals with a literal of the computation.
*/
struct
constant_
propagate
struct
propagate
_constant
{
std
::
string
name
()
const
{
return
"
constant_
propagate"
;
}
std
::
string
name
()
const
{
return
"propagate
_constant
"
;
}
void
apply
(
program
&
p
)
const
;
};
...
...
src/include/migraphx/quantization.hpp
0 → 100644
View file @
eb0d8fee
#ifndef MIGRAPHX_GUARD_RTGLIB_QUANTIZATION_HPP
#define MIGRAPHX_GUARD_RTGLIB_QUANTIZATION_HPP
#include <string>
#include <vector>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
struct
program
;
void
quantize
(
program
&
prog
,
const
std
::
vector
<
std
::
string
>&
ins_names
);
void
quantize
(
program
&
prog
);
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/ranges.hpp
View file @
eb0d8fee
...
...
@@ -12,7 +12,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
detail
{
template
<
class
String
,
class
T
>
auto
generic_find_impl
(
rank
<
2
>
,
String
&&
s
,
const
T
&
x
)
->
decltype
(
s
.
begin
()
+
s
.
find
(
x
)
,
s
.
npos
)
auto
generic_find_impl
(
rank
<
2
>
,
String
&&
s
,
const
T
&
x
)
->
decltype
(
s
.
npos
,
s
.
begin
()
+
s
.
find
(
x
))
{
auto
index
=
s
.
find
(
x
);
if
(
index
==
s
.
npos
)
...
...
@@ -71,6 +71,30 @@ bool all_of(const std::initializer_list<T>& c, const Predicate& p)
return
std
::
all_of
(
c
.
begin
(),
c
.
end
(),
p
);
}
template
<
class
C
,
class
Predicate
>
bool
any_of
(
const
C
&
c
,
const
Predicate
&
p
)
{
return
std
::
any_of
(
c
.
begin
(),
c
.
end
(),
p
);
}
template
<
class
T
,
class
Predicate
>
bool
any_of
(
const
std
::
initializer_list
<
T
>&
c
,
const
Predicate
&
p
)
{
return
std
::
any_of
(
c
.
begin
(),
c
.
end
(),
p
);
}
template
<
class
C
,
class
Predicate
>
bool
none_of
(
const
C
&
c
,
const
Predicate
&
p
)
{
return
std
::
none_of
(
c
.
begin
(),
c
.
end
(),
p
);
}
template
<
class
T
,
class
Predicate
>
bool
none_of
(
const
std
::
initializer_list
<
T
>&
c
,
const
Predicate
&
p
)
{
return
std
::
none_of
(
c
.
begin
(),
c
.
end
(),
p
);
}
template
<
class
Range
,
class
Iterator
>
void
copy
(
Range
&&
r
,
Iterator
it
)
{
...
...
Prev
1
2
3
4
5
6
7
8
9
…
16
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment