Commit e7f7ea10 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/optimize' into ck-gsg

parents 9c6ba1ed ae13eb93
......@@ -25,18 +25,40 @@
#define MIGRAPHX_GUARD_RTGLIB_CONVOLUTION_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
inline shape reshape_if_1d(const shape& input)
{
shape new_shape{input};
auto dims = new_shape.lens();
if(dims.size() == 3)
{
std::vector<size_t> new_dims = dims;
new_dims.insert(new_dims.begin() + 2, 1);
new_shape = shape{input.type(), new_dims};
}
return new_shape;
}
template <class Op>
struct miopen_convolution
{
op::convolution op;
Op op;
bool int8_x4_format = false;
shared<convolution_descriptor> cd = nullptr;
miopenConvFwdAlgorithm_t algo{};
#ifdef MIGRAPHX_HAS_FIND_2_API
......@@ -48,29 +70,273 @@ struct miopen_convolution
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op.padding, "padding"),
f(self.op.stride, "stride"),
f(self.op.dilation, "dilation"),
f(self.op.group, "group"),
f(self.op.padding_mode, "padding_mode"),
return pack(f(self.op, "op"),
#ifdef MIGRAPHX_HAS_FIND_2_API
f(self.solution_object, "solution_object"),
#endif
f(self.algo, "algo"),
f(self.int8_x4_format, "int8_x4_format"),
f(self.solution_id, "solution_id"));
}
std::string name() const { return "gpu::convolution"; }
shape compute_shape(const std::vector<shape>& inputs) const;
std::string name() const { return "gpu::" + op.name(); }
inline shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, op}.has(4);
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5).packed_layouts(
{{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}});
return migraphx::compute_shape<Op>(op, conv_inputs);
}
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
{
auto x_desc = make_tensor(reshape_if_1d(args[0].get_shape()), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape()), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
auto workspace_size = args[2].get_shape().bytes();
#ifdef MIGRAPHX_HAS_FIND_2_API
{
const miopenTensorArgument_t tensor_args[3] = {
{miopenTensorConvolutionX, nullptr, args[0].implicit()},
{miopenTensorConvolutionW, nullptr, args[1].implicit()},
{miopenTensorConvolutionY, nullptr, args[3].implicit()},
};
if(solution_ptr.get() == nullptr)
MIGRAPHX_THROW("MIOpen " + op.name() + " : Load MIOpen Solution before running it");
auto status = miopenRunSolution(miopen_stream_handle,
solution_ptr.get(),
3,
tensor_args,
args[2].implicit(),
workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() +
" : running convolution using find_2.0 failed");
return args[3];
}
#else
// else use immediate mode
if(solution_id == 0)
MIGRAPHX_THROW("MIOpen " + op.name() + " : invalid solution ID");
auto status = miopenConvolutionForwardImmediate(miopen_stream_handle,
w_desc.get(),
args[1].implicit(),
x_desc.get(),
args[0].implicit(),
cd.get(),
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
workspace_size,
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": running convolution failed");
return args[3];
#endif
}
void set_conv_descriptor()
{
cd = (op.name() == "deconvolution") ? make_deconv(op) : make_conv(op);
}
value compile(migraphx::context& ctx, const shape& output, const std::vector<shape>& input)
{
set_conv_descriptor();
auto ws = find(any_cast<migraphx::gpu::context>(ctx), output, input);
return {{"workspace", ws.bytes()}};
}
shape find(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(reshape_if_1d(inputs[0]), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(inputs[1]), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
std::size_t workspace_size = 0;
#ifdef MIGRAPHX_HAS_FIND_2_API
{
auto conv_problem = make_obj<miopen_problem>(
&miopenCreateConvProblem, cd.get(), miopenProblemDirectionForward);
set_tensor_descriptor(miopenTensorConvolutionX, x_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionW, w_desc, conv_problem);
set_tensor_descriptor(miopenTensorConvolutionY, y_desc, conv_problem);
auto* miopen_stream_handle = ctx.get_stream().get_miopen();
solution_ptr = find_solution(miopen_stream_handle, conv_problem.get());
auto status = miopenGetSolutionWorkspaceSize(solution_ptr.get(), &workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + " : failed to get solution's workspace size");
std::size_t solution_size;
status = miopenGetSolutionSize(solution_ptr.get(), &solution_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + ": Failed to fetch solution size");
auto solution_binary = std::vector<char>{};
solution_binary.resize(solution_size);
status = miopenSaveSolution(solution_ptr.get(), solution_binary.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + ": Saving solution failed");
solution_object = value::binary{solution_binary.data(), solution_size};
return shape{shape::int8_type, {workspace_size}};
}
#else
auto status = miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen" + op.name() + " : Failed to get forward workspace size");
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x_shape = inputs[0];
auto w_shape = inputs[1];
if(int8_x4_format)
{
x_shape = pack_int8_shape(x_shape);
w_shape = pack_int8_shape(w_shape);
}
auto x = to_gpu(generate_argument(x_shape));
auto w = to_gpu(generate_argument(w_shape));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + " : find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
#endif
}
void finalize(context& ctx, const shape& output_shape, const std::vector<shape>& inputs)
{
#ifdef MIGRAPHX_HAS_FIND_2_API
{
(void)(ctx); // avoid warnings
(void)(output_shape);
(void)(inputs);
// load solution
if(solution_ptr == nullptr)
{
miopenSolution_t ptr;
auto status =
miopenLoadSolution(&ptr,
reinterpret_cast<const char*>(solution_object.data()),
solution_object.size());
solution_ptr = miopen_solution{ptr};
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen " + op.name() + ": loading convolution solution failed");
}
}
#else
// Use immediate mode API
{
set_conv_descriptor();
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen " + op.name() +
": workspace has changed during finalization.");
}
auto x_desc = make_tensor(reshape_if_1d(inputs[0]), int8_x4_format);
auto w_desc = make_tensor(reshape_if_1d(inputs[1]), int8_x4_format);
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Convolution: compile solution failed");
}
#endif
}
inline std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
inline shape pack_int8_shape(const shape& s) const
{
if(s.type() != shape::int8_type)
{
return s;
}
auto lens = s.lens();
auto strides = s.strides();
lens[1] = (lens[1] + 3) / 4 * 4;
strides[0] = strides[1] * lens[1];
return {s.type(), lens, strides};
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_ELU_HPP
#define MIGRAPHX_GUARD_RTGLIB_ELU_HPP
#include <migraphx/op/elu.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_elu
{
op::elu op;
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::elu"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
void finalize(context&, const shape&, const std::vector<shape>&);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -36,7 +36,8 @@ struct module;
namespace gpu {
std::string dump_mlir(const module& m);
code_object_op compile_mlir(const context& ctx, const module& m);
code_object_op
compile_mlir(const context& ctx, module m, const std::vector<instruction_ref>& inputs);
instruction_ref insert_mlir(module& m,
instruction_ref ins,
......
......@@ -41,7 +41,7 @@ struct problem_params
shape output;
};
std::string get_mlir_perf_for_conv(const problem_params& pp);
std::string get_mlir_perf_for_conv(const problem_params& pp, bool xdlops);
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -25,7 +25,7 @@
#define MIGRAPHX_GUARD_MIGRAPHLIB_ROCBLAS_HPP
#include <migraphx/manage_ptr.hpp>
#include <migraphx/config.hpp>
#include <rocblas.h>
#include <rocblas/rocblas.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......
......@@ -38,16 +38,19 @@ using namespace migraphx::gpu::gen; // NOLINT
static const char* const concat_kernel = R"__migraphx__(
#include <migraphx/kernels/concat.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
concat<${axis}>(y, xs...);
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, ${concat_params}, auto... xs) {
concat<${axis}>(${concat_args})(${post}, y, xs...);
});
}
......@@ -68,28 +71,42 @@ struct concat_compiler : compiler<concat_compiler>
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto num_of_concat_inputs = v.get("concat_inputs", inputs.size() - 1);
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.params = "-Wno-float-equal";
options.kernel_name = v.get("kernel", "concat_kernel");
auto axis = find_fast_axis(options.inputs);
auto vec = vectorize::elements(ctx, axis, options.inputs);
options.kernel_name = v.get("kernel", "concat_kernel");
options.set_launch_params(
v, compute_global_for(ctx, get_concat_elements(options.inputs) / vec.size, 256));
auto src = interpolate_string(concat_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"transformers", make_transformer_args(vec)},
{"axis", v.at("axis").to<std::string>()}});
auto src = interpolate_string(
concat_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"concat_params", enum_params(num_of_concat_inputs, "auto concat_x")},
{"concat_args", enum_params(num_of_concat_inputs, "concat_x")},
{"post", v.get("post", std::string{"op::id{}"})},
{"transformers", make_transformer_args(vec)},
{"preamble", v.get("preamble", std::string{})},
{"axis", v.at("axis").to<std::string>()}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
auto v = op.to_value();
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["concat_inputs"] = ins->inputs().size() - pm->get_parameter_names().size();
v["preamble"] = generate_pointwise(*pm, "post_concat");
v["post"] = "MIGRAPHX_LIFT(post_concat)";
v["kernel"] = "concat_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
}
};
......
......@@ -41,7 +41,7 @@ struct mlir_compiler : compiler<mlir_compiler>
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod));
return insert(compile_mlir(ctx, *smod, ins->inputs()));
}
compiler_replace insert(code_object_op co) const
......
......@@ -21,65 +21,80 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/batch_norm_inference.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/float_equal.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_batch_norm_inference::compute_shape(const std::vector<shape>& inputs) const
using namespace migraphx::gpu::gen; // NOLINT
static const char* const pointwise_kernel = R"__migraphx__(
#include <migraphx/kernels/pad.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/ops.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
__global__ void pad_kernel(void* input_p, void* output_p)
{
check_shapes{inputs, *this}.has(6);
check_shapes{inputs.data(), inputs.data() + 1, *this}.same_ndims().max_ndims(5);
return op.compute_shape({inputs.at(0), inputs.at(1), inputs.at(2), inputs.at(3), inputs.at(4)});
auto offsets = index_ints<${offsets}>{};
auto idx = make_index();
make_tensors()(input_p, output_p)([&](auto input, auto output) {
pad(idx, offsets, input, output, ${pad_val});
});
}
}
inline shape reshape_to_2d(const shape& input)
{
auto dims = input.lens();
if(dims.size() >= 4)
return input;
} // namespace migraphx
std::vector<size_t> new_dims(dims.begin(), dims.end());
std::size_t num = 4 - dims.size();
new_dims.insert(new_dims.end(), num, 1);
return {input.type(), new_dims};
}
)__migraphx__";
argument miopen_batch_norm_inference::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
struct pad_compiler : compiler<pad_compiler>
{
shape x_shape = args[0].get_shape();
shape y_shape = output_shape;
shape bn_shape = args[3].get_shape();
std::vector<std::string> names() const { return {"pad"}; }
auto x_desc = make_tensor(reshape_to_2d(x_shape));
auto y_desc = make_tensor(reshape_to_2d(y_shape));
auto bn_desc = make_tensor(reshape_to_2d(bn_shape));
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.virtual_inputs = reduce_dims(inputs);
options.kernel_name = "pad_kernel";
options.set_launch_params(v, compute_global_for(ctx, inputs.at(1).elements()));
float alpha = 1.0;
float beta = 0.0f;
auto pad_val = v.get("value", 0.f);
auto pad_val_string = to_string(pad_val);
if(float_equal(pad_val, std::numeric_limits<float>::lowest()))
pad_val_string = "lowest{}";
if(float_equal(pad_val, std::numeric_limits<float>::max()))
pad_val_string = "highest{}";
miopenBatchNormalizationForwardInference(ctx.get_stream().get_miopen(),
miopenBatchNormMode_t(op.bn_mode),
&alpha,
&beta,
x_desc.get(),
args[0].implicit(),
y_desc.get(),
args[5].implicit(),
bn_desc.get(),
args[1].implicit(),
args[2].implicit(),
args[3].implicit(),
args[4].implicit(),
op.epsilon);
auto padding = v.at("pads").to_vector<int64_t>();
auto input_lens = inputs.front().lens();
std::vector<size_t> offsets(input_lens.size());
std::copy(padding.begin(), padding.begin() + offsets.size(), offsets.begin());
return args[5];
}
auto src = interpolate_string(
pointwise_kernel,
{{"pad_val", to_string(pad_val_string)}, {"offsets", to_string_range(offsets)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -58,7 +58,7 @@ __global__ void ${kernel}(${params})
struct pointwise_compiler : compiler<pointwise_compiler>
{
std::vector<std::string> names() const { return {"pointwise", "contiguous"}; }
std::vector<std::string> names() const { return {"pointwise", "contiguous", "layout"}; }
static std::size_t oversubscribe_if(bool b)
{
......@@ -91,12 +91,12 @@ struct pointwise_compiler : compiler<pointwise_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
if(op.name() == "contiguous")
if(contains({"layout", "contiguous"}, op.name()))
{
return replace(compile_op(
ctx,
to_shapes(ins->inputs()),
{{"lambda", "[](auto x) { return x; }"}, {"kernel", "contiguous_kernel"}}));
{{"lambda", "[](auto x) { return x; }"}, {"kernel", op.name() + "_kernel"}}));
}
else
{
......
......@@ -79,9 +79,10 @@ struct scatternd_compiler : compiler<scatternd_compiler>
{
assert(starts_with(op.name(), "scatternd_"));
auto reduction = op.name().substr(10);
return insert(compile_op(ctx,
to_shapes({ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
return insert(compile_op(
ctx,
to_shapes(std::vector<instruction_ref>{ins->inputs().begin() + 1, ins->inputs().end()}),
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& op) const
......
......@@ -41,7 +41,15 @@ constexpr auto concat_slice(Output out, Input, Start)
return Start{} * output_shape.strides[Axis];
});
constexpr auto s = make_shape(lens, strides);
return make_tensor_view(&out[offset], s);
MIGRAPHX_ASSERT(offset < out.get_shape().element_space());
MIGRAPHX_ASSERT((s.element_space() + offset) <= out.get_shape().element_space());
return make_tensor_view(out.data() + offset, s);
}
template <index_int Axis, class Input, class Start, class... Ts>
constexpr auto concat_slices(Input input, Start start, Ts... xs)
{
return [=](auto f) { f(concat_slice<Axis>(xs, input, start)...); };
}
template <index_int Axis, class Input>
......@@ -51,15 +59,19 @@ constexpr auto concat_ends(Input)
return _c<lens[Axis]>;
}
template <index_int Axis, class Output, class... Inputs>
__device__ void concat(Output output, Inputs... inputs)
template <index_int Axis, class... Inputs>
__device__ auto concat(Inputs... inputs)
{
auto idx = make_index();
fold([&](auto start, auto input) {
auto y = concat_slice<Axis>(output, input, start);
idx.global_stride(input.get_shape().elements(), [&](auto i) { y[i] = input[i]; });
return start + concat_ends<Axis>(input);
})(_c<0>, inputs...);
return [=](auto f, auto... ts) {
auto idx = make_index();
fold([&](auto start, auto input) {
concat_slices<Axis>(input, start, ts...)([&](auto y, auto... xs) {
idx.global_stride(input.get_shape().elements(),
[&](auto i) { y[i] = f(input[i], xs[i]...); });
});
return start + concat_ends<Axis>(input);
})(_c<0>, inputs...);
};
}
} // namespace migraphx
......
......@@ -21,53 +21,43 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_QUANT_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_RTGLIB_QUANT_CONVOLUTION_HPP
#ifndef MIGRAPHX_GUARD_KERNELS_PAD_HPP
#define MIGRAPHX_GUARD_KERNELS_PAD_HPP
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct miopen_quant_convolution
template <class Offsets, class Input, class Output, class PadVal>
__device__ void pad(const index& idx,
const Offsets& offsets,
const Input& input,
Output& output,
const PadVal& pad_val)
{
op::quant_convolution op;
bool int8_x4_format = false;
shared<convolution_descriptor> cd;
miopenConvFwdAlgorithm_t algo{};
uint64_t solution_id = 0;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
// TODO: Add algo
return pack_join(migraphx::reflect(self.op, f),
pack(f(self.int8_x4_format, "int8_x4_format")));
}
std::string name() const { return "gpu::quant_convolution"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
auto output_shape = output.get_shape();
idx.global_stride(output_shape.elements(), [&](auto i) {
// 1. get current multi-index for output
// 2. get the size of the input to determine input boundaries
// 3. compute the corresponding multi-index for input by accounting for offsets
// 4. if current multi-index is within offsets or input's new multi-index is out of bounds,
// use pad value instead of input's value
auto multi = output_shape.multi(i);
auto input_bounds = input.get_shape().lens;
auto input_idx = multi - offsets;
auto range_multi = range(multi.size());
if(any_of(range_multi.begin(), range_multi.end(), [&](auto j) {
return multi[j] < offsets[j] or input_idx[j] >= input_bounds[j];
}))
output[multi] = pad_val;
else
output[multi] = input[input_idx];
});
}
private:
shape pack_int8_shape(const shape& s) const;
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_RANGES_HPP
#define MIGRAPHX_GUARD_KERNELS_RANGES_HPP
#include <migraphx/kernels/iota_iterator.hpp>
namespace migraphx {
template <class Iterator>
struct iterator_range
{
Iterator start;
Iterator last;
constexpr Iterator begin() const { return start; }
constexpr Iterator end() const { return last; }
};
constexpr iterator_range<iota_iterator> range(diff_int start, diff_int last)
{
return {{start, {}}, {last, {}}};
}
constexpr iterator_range<iota_iterator> range(diff_int last) { return range(0, last); }
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_RANGES_HPP
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_leaky_relu::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_leaky_relu::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
void miopen_leaky_relu::finalize(context&, const shape&, const std::vector<shape>&)
{
ad = make_leaky_relu(op.alpha);
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -29,23 +29,15 @@
#include <migraphx/instruction_ref.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/if_op.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/gpu/batch_norm_inference.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/convolution.hpp>
#include <migraphx/gpu/deconvolution.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/int8_conv_pack.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/iterator_for.hpp>
......@@ -98,14 +90,11 @@ struct miopen_apply
add_extend_op("argmax");
add_extend_op("argmin");
add_extend_op("elu");
add_extend_op("gather");
add_extend_op("leaky_relu");
add_extend_op("logsoftmax");
add_extend_op("lrn");
add_extend_op("multinomial");
add_extend_op("nonzero");
add_extend_op("pad");
add_extend_op("pooling");
add_extend_op("prefix_scan_sum");
add_extend_op("reverse");
......@@ -115,16 +104,15 @@ struct miopen_apply
add_extend_op("scatter_none");
add_extend_op("topk");
add_batch_norm_inference_op();
add_convolution_op();
add_deconvolution_op();
add_convolution_op("convolution");
add_convolution_op("deconvolution");
add_convolution_op("quant_convolution");
add_gemm_op<op::dot>("dot");
add_gemm_op<op::quant_dot>("quant_dot");
add_if_op();
add_loop_op();
add_neg_op();
add_nms_op();
add_quant_convolution_op();
}
void copy_params() const
......@@ -232,38 +220,6 @@ struct miopen_apply
return mod->insert_instruction(ins, make_op("allocate", {{"shape", to_value(s)}}));
}
void add_convolution_op()
{
apply_map.emplace("convolution", [=](instruction_ref ins) {
auto&& op = any_cast<op::convolution>(ins->get_operator());
auto conv = miopen_convolution{op, make_conv(op)};
auto ws = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
auto workspace = insert_allocation(ins, ws);
auto output = insert_allocation(ins, ins->get_shape());
return mod->replace_instruction(
ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
});
}
void add_deconvolution_op()
{
apply_map.emplace("deconvolution", [=](instruction_ref ins) {
auto&& op = any_cast<op::deconvolution>(ins->get_operator());
auto conv = miopen_deconvolution{op, make_deconv(op)};
auto ws = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
auto workspace = insert_allocation(ins, ws);
auto output = insert_allocation(ins, ins->get_shape());
return mod->replace_instruction(
ins, conv, ins->inputs().at(0), ins->inputs().at(1), workspace, output);
});
}
template <typename Op>
void add_gemm_op(const std::string& name)
{
......@@ -277,32 +233,19 @@ struct miopen_apply
});
}
void add_quant_convolution_op()
void add_convolution_op(const std::string& name)
{
apply_map.emplace("quant_convolution", [=](instruction_ref ins) {
auto&& op = any_cast<op::quant_convolution>(ins->get_operator());
shape ws;
miopen_quant_convolution conv;
auto compile_quant_conv_with_format = [&](bool format) {
conv = miopen_quant_convolution{op, format, make_conv(op)};
ws = conv.find(get_context(), ins->get_shape(), to_shapes(ins->inputs()));
};
try
{
compile_quant_conv_with_format(int8_x4_format);
}
catch(migraphx::exception&)
{
// In case no solver supports the default format, retry using the other format.
compile_quant_conv_with_format(not int8_x4_format);
}
auto args = ins->inputs();
auto workspace = insert_allocation(ins, ws);
auto output = insert_allocation(ins, ins->get_shape());
apply_map.emplace(name, [=](instruction_ref ins) {
operation conv = make_op(
"gpu::" + name,
{{"op", ins->get_operator().to_value()}, {"int8_x4_format", int8_x4_format}});
auto output = insert_allocation(ins, ins->get_shape());
return mod->replace_instruction(ins, conv, args[0], args[1], workspace, output);
return mod->replace_instruction(ins,
make_op("gpu::miopen_op", {{"op", to_value(conv)}}),
ins->inputs().at(0),
ins->inputs().at(1),
output);
});
}
......@@ -336,43 +279,6 @@ struct miopen_apply
});
}
void add_batch_norm_inference_op()
{
apply_map.emplace("batch_norm_inference", [=](instruction_ref ins) {
auto&& op = any_cast<op::batch_norm_inference>(ins->get_operator());
auto output = insert_allocation(ins, ins->get_shape());
shape old_shape = ins->inputs().at(1)->get_shape();
auto input = ins->inputs()[0];
auto input_lens = input->get_shape().lens();
std::vector<int64_t> rsp_lens(input_lens.size(), 1);
// for per_activation case, also need to reshape input
if(op.bn_mode == op::batch_norm_inference::per_activation)
{
std::copy(input_lens.begin() + 1, input_lens.end(), rsp_lens.begin() + 1);
}
else
{
rsp_lens[1] = static_cast<int64_t>(old_shape.elements());
}
auto reshape_op = op::reshape{rsp_lens};
std::vector<instruction_ref> reshapes;
std::transform(ins->inputs().begin() + 1,
ins->inputs().end(),
std::back_inserter(reshapes),
[&](auto i) { return mod->insert_instruction(ins, reshape_op, i); });
return mod->replace_instruction(ins,
miopen_batch_norm_inference{op},
input,
reshapes[0],
reshapes[1],
reshapes[2],
reshapes[3],
output);
});
}
// use 0 - input to represent neg
void add_neg_op()
{
......
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "migraphx/make_op.hpp"
#include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR
......@@ -43,8 +44,9 @@
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <deque>
#include <variant>
......@@ -99,7 +101,10 @@ struct mlir_handle
mlir_handle(T p) : handle(ptr{p}) {}
T get() const { return handle.get().get(); }
T get() const
{
return handle.get().get(); // NOLINT(readability-redundant-smartptr-get)
}
T release() { return handle.release().get(); }
......@@ -370,7 +375,11 @@ struct mlir_program
mlir_operation_state& add_results(const std::vector<shape>& outputs)
{
auto x = prog->make_tensors(outputs);
std::vector<shape> reshaped(outputs.size());
std::transform(outputs.begin(), outputs.end(), reshaped.begin(), [](const shape& r) {
return shape{r.type(), r.lens()};
});
auto x = prog->make_tensors(reshaped);
mlirOperationStateAddResults(&op_state, x.size(), x.data());
return *this;
}
......@@ -502,11 +511,12 @@ struct mlir_program
{
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
std::string tuned = get_tune_params();
// check if HW supports xdlops
bool xdlops = contains(get_xdlops_archs(), target_name);
std::string tuned = get_tune_params(xdlops);
if(not tuned.empty())
ops.add_attributes({{"perf_config", tuned}});
// check if HW supports xdlops
if(contains(get_xdlops_archs(), target_name))
if(xdlops)
ops.add_attributes({{"xdlopsV2", true}});
}
......@@ -571,7 +581,7 @@ struct mlir_program
MIGRAPHX_THROW("Failed to compile mlir program");
}
std::string get_tune_params() { return get_mlir_perf_for_conv(pp); }
std::string get_tune_params(bool xdlops) { return get_mlir_perf_for_conv(pp, xdlops); }
mlir_context ctx;
MlirLocation location;
......@@ -589,8 +599,54 @@ std::string dump_mlir(const module& m)
return mlir_print(&mlirOperationPrint, mod_op);
}
code_object_op compile_mlir(const context&, const module& m)
void adjust_param_shapes(module& m, const std::vector<instruction_ref>& inputs)
{
auto names = m.get_parameter_names();
std::sort(names.begin(), names.end());
for(auto i : range(names.size()))
{
const auto& name = names[i];
const auto& input = inputs[i]->get_shape();
auto param = m.get_parameter(name);
if(input.standard())
continue;
auto lens = input.lens();
auto strides = input.strides();
std::vector<operation> ops;
if(input.transposed())
{
auto perm = find_permutation(input);
auto iperm = invert_permutation(perm);
lens = reorder_dims(lens, iperm);
strides = reorder_dims(strides, iperm);
ops.push_back(make_op("transpose", {{"permutation", perm}}));
}
if(input.broadcasted())
{
std::transform(lens.begin(),
lens.end(),
strides.begin(),
lens.begin(),
[](auto len, auto stride) -> std::size_t {
if(stride == 0)
return 1;
return len;
});
ops.push_back(make_op("multibroadcast", {{"out_lens", input.lens()}}));
}
auto new_param =
std::accumulate(ops.begin(),
ops.end(),
m.add_parameter(name + ".0", shape{input.type(), lens}),
[&](auto x, auto op) { return m.insert_instruction(param, op, x); });
m.replace_instruction(param, new_param);
m.remove_instruction(param);
}
}
code_object_op compile_mlir(const context&, module m, const std::vector<instruction_ref>& inputs)
{
adjust_param_shapes(m, inputs);
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
if(trace)
std::cout << m << std::endl;
......@@ -662,13 +718,19 @@ instruction_ref insert_mlir(module& m,
std::string dump_mlir(const module&) { return {}; }
code_object_op compile_mlir(const context&, const module&) { return {}; }
template <class T>
void use(T&)
{
}
// Disabling clang-tidy warning on non-real useage.
// NOLINTBEGIN(performance-unnecessary-value-param)
code_object_op compile_mlir(const context&, module, const std::vector<instruction_ref>&)
{
return {};
}
// NOLINTEND(performance-unnecessary-value-param)
instruction_ref
// cppcheck-suppress funcArgNamesDifferent
insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&)
......
......@@ -108,16 +108,17 @@ auto query_miopen_db(const std::string& query)
} // namespace
std::string get_mlir_perf_for_conv(const problem_params& pp)
std::string get_mlir_perf_for_conv(const problem_params& pp, bool xdlops)
{
std::string query = "select P.* \
std::string solver = xdlops ? "ConvMlirIgemmFwdXdlops" : "ConvMlirIgemmFwd";
std::string query = "select P.* \
from perf_db P, config C \
where P.config = C.id AND \
P.solver = 'ConvMlirIgemmFwdXdlops' AND \
P.solver = '${solver}' AND \
${config}";
auto results =
query_miopen_db(interpolate_string(query, {{"config", generate_miopen_config(pp)}}));
auto results = query_miopen_db(
interpolate_string(query, {{"config", generate_miopen_config(pp)}, {"solver", solver}}));
if(results.empty())
return "";
return results.front().at("params");
......
......@@ -104,7 +104,9 @@ struct find_add_layernorm
{
auto ins = r.result;
auto add_ins = r.instructions["add"];
auto eps = r.instructions["eps"]->eval().at<float>();
float eps = 0;
if(contains(r.instructions, "eps"))
eps = r.instructions["eps"]->eval().at<float>();
m.replace_instruction(ins, add_layernorm{eps}, add_ins->inputs());
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_quant_convolution::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(4).standard();
return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
}
argument miopen_quant_convolution::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
auto x_desc = make_tensor(args[0].get_shape(), int8_x4_format);
auto w_desc = make_tensor(args[1].get_shape(), int8_x4_format);
auto y_desc = make_tensor(output_shape);
float alpha = 1;
float beta = 0;
auto status = miopenConvolutionForward(ctx.get_stream().get_miopen(),
&alpha,
x_desc.get(),
args[0].implicit(),
w_desc.get(),
args[1].implicit(),
cd.get(),
algo,
&beta,
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
args[2].get_shape().bytes());
if(status != miopenStatusSuccess)
{
MIGRAPHX_THROW("QUANT_CONVOLUTION: run convolution forward failed");
}
return args[3];
}
shape miopen_quant_convolution::find(context& ctx,
const shape& output_shape,
std::vector<shape> inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(inputs[0], int8_x4_format);
auto w_desc = make_tensor(inputs[1], int8_x4_format);
auto y_desc = make_tensor(output_shape);
std::size_t workspace_size = 0;
miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x_shape = inputs[0];
auto w_shape = inputs[1];
if(int8_x4_format)
{
x_shape = pack_int8_shape(x_shape);
w_shape = pack_int8_shape(w_shape);
}
auto x = to_gpu(generate_argument(x_shape));
auto w = to_gpu(generate_argument(w_shape));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
auto status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
}
void miopen_quant_convolution::finalize(context& ctx,
const shape& output_shape,
std::vector<shape> inputs)
{
if(cd == nullptr)
cd = make_conv(op);
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen Quant Convolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(inputs[0], int8_x4_format);
auto w_desc = make_tensor(inputs[1], int8_x4_format);
auto y_desc = make_tensor(output_shape);
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: compile solution failed");
}
shape miopen_quant_convolution::pack_int8_shape(const shape& s) const
{
if(s.type() != shape::int8_type)
{
MIGRAPHX_THROW("PACK_INT8_SHAPE: only process int8_type");
}
auto lens = s.lens();
auto strides = s.strides();
lens[1] = (lens[1] + 3) / 4 * 4;
strides[0] = strides[1] * lens[1];
return {s.type(), lens, strides};
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -35,13 +35,14 @@
#include <migraphx/fuse_pointwise.hpp>
#include <migraphx/inline_module.hpp>
#include <migraphx/insert_pad.hpp>
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/memory_coloring.hpp>
#include <migraphx/normalize_ops.hpp>
#include <migraphx/optimize.hpp>
#include <migraphx/preallocate_param.hpp>
#include <migraphx/propagate_constant.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/replace_allocate.hpp>
#include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/rewrite_gelu.hpp>
#include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp>
......@@ -51,6 +52,7 @@
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/gpu/allocation_model.hpp>
#include <migraphx/gpu/compile_miopen.hpp>
#include <migraphx/gpu/compile_ops.hpp>
#include <migraphx/gpu/concat_gpu_opt.hpp>
#include <migraphx/gpu/context.hpp>
......@@ -73,6 +75,7 @@ namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_SCHEDULE_PASS)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_POINTWISE_FUSION)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_NHWC)
struct id_pass
{
......@@ -112,20 +115,15 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
insert_pad{},
dead_code_elimination{},
rewrite_batchnorm{},
dead_code_elimination{},
rewrite_rnn{},
dead_code_elimination{},
inline_module{},
rewrite_pooling{},
dead_code_elimination{},
rewrite_gelu{},
optimize{},
enable_pass(enabled(MIGRAPHX_ENABLE_NHWC{}), layout_nhwc{}),
dead_code_elimination{},
eliminate_common_subexpression{},
dead_code_elimination{},
simplify_algebra{},
simplify_reshapes{},
simplify_algebra{},
prefuse_ops{},
dead_code_elimination{},
auto_contiguous{},
......@@ -134,6 +132,7 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
fuse_ck_gemm_softmax_gemm{&ctx},
dead_code_elimination{},
optimize{},
enable_pass(not enabled(MIGRAPHX_DISABLE_POINTWISE_FUSION{}), fuse_pointwise{}),
dead_code_elimination{},
fuse_mlir{&ctx},
......@@ -145,6 +144,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
eliminate_concat{concat_gpu_optimization{}},
dead_code_elimination{},
compile_miopen{&gctx},
dead_code_elimination{},
pack_int8_args{},
dead_code_elimination{},
adjust_allocation{gpu_allocation_model{}},
......@@ -153,6 +154,8 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{},
replace_allocate{gpu_allocation_model{}, options.offload_copy},
dead_code_elimination{},
adjust_allocation{gpu_allocation_model{}},
dead_code_elimination{},
compile_ops{&ctx},
dead_code_elimination{},
write_literals{&ctx},
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment