Commit e2eb6036 authored by Paul's avatar Paul
Browse files

Merge

parents 298c93d5 1e0bbd78
isnan_float_test:O

t1t2"IsNaNisnan_float_testZ
t1


b
t2


B
\ No newline at end of file
isnan_half_test:N

t1t2"IsNaNisnan_half_testZ
t1



b
t2



B
\ No newline at end of file
lpnormalization_axis_error_test:q
$
xy"LpNormalization*
axis lpnormalization_axis_error_testZ
x


b
y


B
\ No newline at end of file
lpnormalization_l1_test:f
!
xy"LpNormalization*
plpnormalization_l1_testZ
x


b
y


B
\ No newline at end of file
lpnormalization_l2_test:f
!
xy"LpNormalization*
plpnormalization_l2_testZ
x


b
y


B
\ No newline at end of file
lpnormalization_p_error_test:k
!
xy"LpNormalization*
plpnormalization_p_error_testZ
x


b
y


B
\ No newline at end of file
......@@ -46,6 +46,40 @@ migraphx::program optimize_onnx(const std::string& name, bool run_passes = false
return prog;
}
void add_celu_instruction(migraphx::module* mm, const migraphx::shape& s, float alpha)
{
auto x = mm->add_parameter("x", s);
const auto& input_lens = s.lens();
const auto& input_type = s.type();
auto zero_lit =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0.}}));
auto one_lit =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1.}}));
auto alpha_lit = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto linear_part = mm->add_instruction(migraphx::make_op("max"), zero_lit, x);
auto divi = mm->add_instruction(migraphx::make_op("div"), x, alpha_lit);
auto expo = mm->add_instruction(migraphx::make_op("exp"), divi);
auto sub = mm->add_instruction(migraphx::make_op("sub"), expo, one_lit);
auto mul = mm->add_instruction(migraphx::make_op("mul"), alpha_lit, sub);
auto exp_part = mm->add_instruction(migraphx::make_op("min"), zero_lit, mul);
mm->add_instruction(migraphx::make_op("add"), linear_part, exp_part);
}
static std::vector<double> make_r_eyelike(size_t num_rows, size_t num_cols, size_t k)
{
std::vector<double> eyelike_mat(num_rows * num_cols, 0);
for(size_t i = 0; i < num_rows; ++i)
{
if(i + k < num_cols)
eyelike_mat[(num_cols + 1) * i + k] = 1.;
}
return eyelike_mat;
}
TEST_CASE(acos_test)
{
migraphx::program p;
......@@ -191,11 +225,12 @@ TEST_CASE(averagepool_1d_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {1, 3, 5}});
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "average"}, {"padding", {0, 0}}, {"stride", {1}}, {"lengths", {3}}}),
l0);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0}},
{"stride", {1}},
{"lengths", {3}}}),
l0);
auto prog = optimize_onnx("averagepool_1d_test.onnx");
EXPECT(p == prog);
......@@ -207,7 +242,7 @@ TEST_CASE(averagepool_3d_test)
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("0", {migraphx::shape::float_type, {1, 3, 5, 5, 5}});
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0, 0, 0}},
{"stride", {1, 1, 1}},
{"lengths", {3, 3, 3}}}),
......@@ -223,7 +258,7 @@ TEST_CASE(averagepool_notset_test)
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
......@@ -244,7 +279,7 @@ TEST_CASE(averagepool_nt_cip_test)
std::vector<int64_t> pads = {0, 0, 0, 0, 0, 0, 1, 1};
auto ins_pad = mm->add_instruction(migraphx::make_op("pad", {{"pads", pads}}), input);
auto ret = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
......@@ -261,7 +296,7 @@ TEST_CASE(averagepool_same_lower_test)
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
......@@ -282,7 +317,7 @@ TEST_CASE(averagepool_sl_cip_test)
std::vector<int64_t> pads = {0, 0, 1, 1, 0, 0, 0, 0};
auto ins_pad = mm->add_instruction(migraphx::make_op("pad", {{"pads", pads}}), input);
auto ret = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
......@@ -299,7 +334,7 @@ TEST_CASE(averagepool_same_upper_test)
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
auto ins = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", "average"},
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
......@@ -368,6 +403,42 @@ TEST_CASE(ceil_test)
EXPECT(p == prog);
}
TEST_CASE(celu_alpha_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens = {3};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
float alpha = 0.8;
add_celu_instruction(mm, s, alpha);
auto prog = optimize_onnx("celu_alpha_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(celu_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens = {2, 3};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
float alpha = 1.0;
add_celu_instruction(mm, s, alpha);
auto prog = optimize_onnx("celu_default_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(celu_wrong_type_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("celu_wrong_type_test.onnx"); }));
}
TEST_CASE(celu_zero_alpha_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("celu_zero_alpha_test.onnx"); }));
}
TEST_CASE(clip_test)
{
migraphx::program p;
......@@ -458,6 +529,28 @@ TEST_CASE(clip_test_op11_no_args1)
EXPECT(p == prog);
}
TEST_CASE(clip_test_args_type_mismatch)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto min_val = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {1, 3}}, {1.5, 2.5, 3.5}});
auto max_val = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::int64_type, {3, 1}}, {2, 3, 4}});
auto l0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {3, 3}});
min_val =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), min_val);
max_val =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 3}}}), max_val);
max_val = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::float_type}}), max_val);
auto r = mm->add_instruction(migraphx::make_op("clip"), l0, min_val, max_val);
mm->add_return({r});
auto prog = migraphx::parse_onnx("clip_test_args_type_mismatch.onnx");
EXPECT(p == prog);
}
TEST_CASE(concat_test)
{
migraphx::program p;
......@@ -669,11 +762,12 @@ TEST_CASE(conv_bn_relu_maxpool_test)
auto l6 = mm->add_instruction(
migraphx::make_op("batch_norm_inference", {{"epsilon", 1.0e-5f}}), l5, p3, p4, p5, p6);
auto l7 = mm->add_instruction(migraphx::make_op("relu"), l6);
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 0, 0}}, {"stride", {2, 2}}, {"lengths", {2, 2}}}),
l7);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
l7);
auto prog = optimize_onnx("conv_bn_relu_maxpool_test.onnx");
EXPECT(p == prog);
......@@ -693,11 +787,12 @@ TEST_CASE(conv_relu_maxpool_test)
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", l3->get_shape().lens()}}), l2);
auto l5 = mm->add_instruction(migraphx::make_op("add"), l3, l4);
auto l6 = mm->add_instruction(migraphx::make_op("relu"), l5);
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 0, 0}}, {"stride", {2, 2}}, {"lengths", {2, 2}}}),
l6);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
l6);
auto prog = optimize_onnx("conv_relu_maxpool_test.onnx");
EXPECT(p == prog);
......@@ -717,11 +812,12 @@ TEST_CASE(conv_relu_maxpool_x2_test)
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", l3->get_shape().lens()}}), l2);
auto l5 = mm->add_instruction(migraphx::make_op("add"), l3, l4);
auto l6 = mm->add_instruction(migraphx::make_op("relu"), l5);
auto l7 = mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 0, 0}}, {"stride", {2, 2}}, {"lengths", {2, 2}}}),
l6);
auto l7 = mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
l6);
auto l8 = mm->add_parameter("3", {migraphx::shape::float_type, {1, 5, 5, 5}});
auto l9 = mm->add_parameter("4", {migraphx::shape::float_type, {1}});
......@@ -732,11 +828,12 @@ TEST_CASE(conv_relu_maxpool_x2_test)
l9);
auto l12 = mm->add_instruction(migraphx::make_op("add"), l10, l11);
auto l13 = mm->add_instruction(migraphx::make_op("relu"), l12);
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 0, 0}}, {"stride", {2, 2}}, {"lengths", {2, 2}}}),
l13);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}},
{"stride", {2, 2}},
{"lengths", {2, 2}}}),
l13);
auto prog = optimize_onnx("conv_relu_maxpool_x2_test.onnx");
......@@ -1259,6 +1356,121 @@ TEST_CASE(external_data_diff_path_test)
EXPECT(p == prog);
}
TEST_CASE(eyelike_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4};
const size_t k = 0;
auto num_rows = input_lens.front();
auto num_cols = input_lens.back();
auto input_type = migraphx::shape::float_type;
auto output_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
mm->add_parameter("T1", s);
auto eyelike_mat = make_r_eyelike(num_rows, num_cols, k);
mm->add_literal(migraphx::literal{migraphx::shape{output_type, input_lens}, eyelike_mat});
auto prog = optimize_onnx("eyelike_default_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(eyelike_double_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{6, 15};
const size_t k = 0;
auto num_rows = input_lens.front();
auto num_cols = input_lens.back();
auto input_type = migraphx::shape::double_type;
auto output_type = migraphx::shape::double_type;
migraphx::shape s{input_type, input_lens};
mm->add_parameter("T1", s);
auto eyelike_mat = make_r_eyelike(num_rows, num_cols, k);
mm->add_literal(migraphx::literal{migraphx::shape{output_type, input_lens}, eyelike_mat});
auto prog = optimize_onnx("eyelike_double_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(eyelike_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{8, 8};
const size_t k = 0;
auto num_rows = input_lens.front();
auto num_cols = input_lens.back();
auto input_type = migraphx::shape::half_type;
auto output_type = migraphx::shape::half_type;
migraphx::shape s{input_type, input_lens};
mm->add_parameter("T1", s);
auto eyelike_mat = make_r_eyelike(num_rows, num_cols, k);
mm->add_literal(migraphx::literal{migraphx::shape{output_type, input_lens}, eyelike_mat});
auto prog = optimize_onnx("eyelike_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(eyelike_k_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4};
const size_t k = 1;
auto num_rows = input_lens.front();
auto num_cols = input_lens.back();
auto input_type = migraphx::shape::float_type;
auto output_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
mm->add_parameter("T1", s);
auto eyelike_mat = make_r_eyelike(num_rows, num_cols, k);
mm->add_literal(migraphx::literal{migraphx::shape{output_type, input_lens}, eyelike_mat});
auto prog = optimize_onnx("eyelike_k_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(eyelike_k_outofbounds_neg_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("eyelike_k_outofbounds_neg_test.onnx"); }));
}
TEST_CASE(eyelike_k_outofbounds_pos_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("eyelike_k_outofbounds_pos_test.onnx"); }));
}
TEST_CASE(eyelike_not_rank2_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("eyelike_not_rank2_test.onnx"); }));
}
TEST_CASE(eyelike_set_dtype_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4};
const size_t k = 0;
auto num_rows = input_lens.front();
auto num_cols = input_lens.back();
auto input_type = migraphx::shape::float_type;
auto output_type = migraphx::shape::double_type;
migraphx::shape s{input_type, input_lens};
mm->add_parameter("T1", s);
auto eyelike_mat = make_r_eyelike(num_rows, num_cols, k);
mm->add_literal(migraphx::literal{migraphx::shape{output_type, input_lens}, eyelike_mat});
auto prog = optimize_onnx("eyelike_set_dtype_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(flatten_test)
{
migraphx::program p;
......@@ -1481,7 +1693,7 @@ TEST_CASE(globalavgpool_test)
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {1, 3, 16, 16}});
auto op = migraphx::op::pooling{"average"};
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average};
auto lens = input->get_shape().lens();
op.lengths = {lens[2], lens[3]};
op.padding = {0, 0, 0, 0};
......@@ -1498,7 +1710,7 @@ TEST_CASE(globalmaxpool_test)
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {1, 3, 16, 16}});
auto op = migraphx::op::pooling{"max"};
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::max};
auto lens = input->get_shape().lens();
op.lengths = {lens[2], lens[3]};
op.padding = {0, 0, 0, 0};
......@@ -1929,6 +2141,32 @@ TEST_CASE(if_tuple_test)
EXPECT(p == prog);
}
TEST_CASE(isnan_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto ret = mm->add_instruction(migraphx::make_op("isnan"), t1);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isnan_float_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isnan_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto ret = mm->add_instruction(migraphx::make_op("isnan"), t1);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isnan_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(imagescaler_test)
{
migraphx::program p;
......@@ -2318,6 +2556,46 @@ TEST_CASE(loop_test)
EXPECT(p == prog);
}
TEST_CASE(lpnormalization_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
std::ptrdiff_t axis = 0;
auto p_val = mm->add_instruction(migraphx::make_op("mul"), x, x);
auto norms = mm->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {axis}}}), p_val);
norms = mm->add_instruction(migraphx::make_op("sqrt"), norms);
norms =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}), norms);
auto zero_mb =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0.}}));
auto one_mb =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1.}}));
auto is_zero = mm->add_instruction(migraphx::make_op("equal"), norms, zero_mb);
auto norms_zeros_to_one =
mm->add_instruction(migraphx::make_op("where"), is_zero, one_mb, norms);
mm->add_instruction(migraphx::make_op("div"), x, norms_zeros_to_one);
auto prog = optimize_onnx("lpnormalization_default_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(lpnormalization_axis_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("lpnormalization_axis_error_test.onnx"); }));
}
TEST_CASE(lpnormalization_p_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("lpnormalization_p_error_test.onnx"); }));
}
TEST_CASE(lrn_test)
{
migraphx::program p;
......@@ -2465,11 +2743,12 @@ TEST_CASE(maxpool_notset_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 1, 1}}, {"stride", {2, 2}}, {"lengths", {6, 6}}}),
input);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}},
{"stride", {2, 2}},
{"lengths", {6, 6}}}),
input);
auto prog = optimize_onnx("maxpool_notset_test.onnx");
......@@ -2481,11 +2760,12 @@ TEST_CASE(maxpool_same_upper_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 1, 5, 5}});
mm->add_instruction(
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0, 1, 1}}, {"stride", {1, 1}}, {"lengths", {2, 2}}}),
input);
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}},
{"stride", {1, 1}},
{"lengths", {2, 2}}}),
input);
auto prog = optimize_onnx("maxpool_same_upper_test.onnx");
......@@ -3970,6 +4250,57 @@ TEST_CASE(scatter_test)
EXPECT(p == prog);
}
TEST_CASE(scatternd_test)
{
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 =
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 =
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_none"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_test.onnx");
EXPECT(p == prog);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 =
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 =
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_add"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_add_test.onnx");
EXPECT(p == prog);
}
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 =
mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1, 2}});
auto l2 =
mm->add_parameter("updates", migraphx::shape{migraphx::shape::float_type, {2, 1, 2}});
auto r = mm->add_instruction(migraphx::make_op("scatternd_mul"), l0, l1, l2);
mm->add_return({r});
auto prog = migraphx::parse_onnx("scatternd_mul_test.onnx");
EXPECT(p == prog);
}
}
TEST_CASE(selu_test)
{
migraphx::program p;
......@@ -4066,6 +4397,40 @@ TEST_CASE(sinh_test)
EXPECT(p == prog);
}
TEST_CASE(size_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::float_type, {2, 3, 4}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_float_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(size_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::half_type, {3, 1}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(size_int_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto s = migraphx::shape{migraphx::shape::int32_type, {8, 2, 3}};
mm->add_parameter("x", s);
mm->add_literal(migraphx::literal{migraphx::shape::int64_type, {s.elements()}});
auto prog = optimize_onnx("size_int_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(slice_test)
{
migraphx::program p;
......
scatternd_add_test:Î
@
data
indices
updatesoutput" ScatterND*
reduction"add scatternd_add_testZ
data



Z
indices



Z
updates



b
output



B
\ No newline at end of file
scatternd_mul_test:
@
data
indices
updatesoutput" ScatterND*
reduction"mulscatternd_mul_testZ
data



Z
indices



Z
updates



b
output



B
\ No newline at end of file
scatternd_test:
+
data
indices
updatesoutput" ScatterNDscatternd_testZ
data



Z
indices



Z
updates



b
output



B
\ No newline at end of file
size_float_test:I
xy"Sizesize_float_testZ
x



b
y

B
\ No newline at end of file
size_half_test:D
xy"Sizesize_half_testZ
x



b
y

B
\ No newline at end of file
 size_int_test:G
xy"Size size_int_testZ
x



b
y

B
\ No newline at end of file
size_verify_test:J
xy"Sizesize_verify_testZ
x



b
y

B
\ No newline at end of file
......@@ -45,6 +45,44 @@ TEST_CASE(averagepool_nt_cip_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(celu_verify_test)
{
migraphx::program p = migraphx::parse_onnx("celu_verify_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
std::vector<float> data = {-5.5, 2.0, 100., 7.0, 0., -1.};
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> correct(6);
float alpha = 0.5;
std::transform(data.begin(), data.end(), correct.begin(), [&](auto x) {
return std::max(0.0f, x) + std::min(0.0f, alpha * std::expm1(x / alpha));
});
EXPECT(migraphx::verify_range(result_vector, correct));
}
TEST_CASE(clip_args_type_mismatch)
{
auto p = migraphx::parse_onnx("clip_test_args_type_mismatch.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s_0{migraphx::shape::float_type, {3, 3}};
migraphx::parameter_map pp;
std::vector<float> data_0 = {0.9, 1.2, 1.7, 1.9, 2.2, 2.7, 2.9, 3.2, 3.7};
pp["0"] = migraphx::argument(s_0, data_0.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.5, 2, 2, 1.9, 2.5, 3, 2.9, 3.2, 3.7};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(depthtospace_simple_test)
{
auto p = migraphx::parse_onnx("depthtospace_simple_test.onnx");
......@@ -103,6 +141,42 @@ TEST_CASE(spacetodepth_depthtospace_test)
EXPECT(migraphx::verify_range(result_vector2, data_in));
}
TEST_CASE(eyelike_verify_test)
{
migraphx::program p = migraphx::parse_onnx("eyelike_verify_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {3, 4}};
std::vector<float> data{12, 0};
migraphx::parameter_map pp;
pp["T1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> eyelike_mat = {0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.};
EXPECT(migraphx::verify_range(result_vector, eyelike_mat));
}
TEST_CASE(eyelike_verify_negk_test)
{
migraphx::program p = migraphx::parse_onnx("eyelike_verify_negk_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {3, 4}};
std::vector<float> data{12, 0};
migraphx::parameter_map pp;
pp["T1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> eyelike_mat = {0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.};
EXPECT(migraphx::verify_range(result_vector, eyelike_mat));
}
TEST_CASE(gather_elements)
{
migraphx::program p = migraphx::parse_onnx("gather_elements_axis0_test.onnx");
......@@ -393,6 +467,62 @@ TEST_CASE(lessorequal_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(lpnormalization_1norm)
{
migraphx::program p = migraphx::parse_onnx("lpnormalization_l1_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {3, 4}};
std::vector<float> data{0.f, 2.f, -2.f, 1.f, 1.f, -5.f, 3.f, -1.f, -4.f, 3.f, 0.f, 0.f};
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{0.f,
2.f / 5.f,
-2.f / 5.f,
1.f / 5.f,
1.f / 10.f,
-5.f / 10.f,
3.f / 10.f,
-1.f / 10.f,
-4.f / 7.f,
3.f / 7.f,
0.f,
0.f};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(lpnormalization_2norm)
{
migraphx::program p = migraphx::parse_onnx("lpnormalization_l2_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {3, 4}};
std::vector<float> data{0.f, 2.f, -2.f, 1.f, 1.f, -5.f, 3.f, -1.f, -4.f, 3.f, 0.f, 0.f};
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> correct{0.f,
2.f / 3.f,
-2.f / 3.f,
1.f / 3.f,
1.f / 6.f,
-5.f / 6.f,
3.f / 6.f,
-1.f / 6.f,
-4.f / 5.f,
3.f / 5.f,
0.f,
0.f};
EXPECT(migraphx::verify_range(result_vector, correct));
}
TEST_CASE(mean_broadcast_test)
{
migraphx::program p = migraphx::parse_onnx("mean_broadcast_test.onnx");
......@@ -588,6 +718,21 @@ TEST_CASE(selu_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(size_verify_test)
{
migraphx::program p = migraphx::parse_onnx("size_verify_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape s{migraphx::shape::float_type, {2, 5, 3}};
std::vector<float> data(30, 1.);
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
auto size_result = result.at<int64_t>();
EXPECT(size_result == int64_t{30});
}
TEST_CASE(slice_test)
{
migraphx::program p = migraphx::parse_onnx("slice_test.onnx");
......
......@@ -570,10 +570,12 @@ TEST_CASE(inconsistent_attr_shape)
{{"padding", {1, 1}}, {"stride", {2}}, {"dilation", {3, 3, 3}}}),
input,
weights);
throws_shape(
migraphx::make_op(
"pooling", {{"mode", "max"}, {"padding", {1}}, {"stride", {0}}, {"lengths", {1, 1}}}),
input);
throws_shape(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {1}},
{"stride", {0}},
{"lengths", {1, 1}}}),
input);
}
template <class T>
......@@ -983,21 +985,24 @@ TEST_CASE(pooling_shape)
{
migraphx::shape output{migraphx::shape::float_type, {4, 3, 1, 1}};
migraphx::shape input{migraphx::shape::float_type, {4, 3, 3, 3}};
throws_shape(
migraphx::make_op("pooling",
{{"mode", "max"}, {"padding", {1}}, {"stride", {0}}, {"lengths", {1}}}),
input);
expect_shape(
output,
migraphx::make_op(
"pooling",
{{"mode", "max"}, {"padding", {0, 0}}, {"stride", {3, 3}}, {"lengths", {1, 1}}}),
input);
throws_shape(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {1}},
{"stride", {0}},
{"lengths", {1}}}),
input);
expect_shape(output,
migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0}},
{"stride", {3, 3}},
{"lengths", {1, 1}}}),
input);
migraphx::shape output1{migraphx::shape::float_type, {4, 3, 2, 2}};
expect_shape(output1,
migraphx::make_op("pooling",
{{"mode", "max"},
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0}},
{"stride", {3, 3}},
{"lengths", {1, 1}},
......@@ -1432,6 +1437,29 @@ TEST_CASE(test_scalar_nelemnts)
throws_shape(migraphx::make_op("scalar", {{"scalar_bcst_dims", {2, 3, 4, 5}}}), input);
}
TEST_CASE(test_scatternd)
{
{
// k > r
auto dtype = migraphx::shape::float_type;
auto itype = migraphx::shape::int64_type;
migraphx::shape ds{dtype, {8}};
migraphx::shape is{itype, {4, 2}};
migraphx::shape us{dtype, {4}};
throws_shape(migraphx::make_op("scatternd_none"), ds, is, us);
}
{
// update.lens != indices.lens[0:q-1] ++ data.lens[k:r-1]
auto dtype = migraphx::shape::float_type;
auto itype = migraphx::shape::int64_type;
migraphx::shape ds{dtype, {8}};
migraphx::shape is{itype, {4, 1}};
migraphx::shape us{dtype, {2, 2}};
throws_shape(migraphx::make_op("scatternd_none"), ds, is, us);
}
}
TEST_CASE(test_squeeze)
{
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
......@@ -1446,6 +1474,27 @@ TEST_CASE(test_squeeze_all)
expect_shape(s2, migraphx::make_op("squeeze", {{"axes", {0}}}), s1);
}
TEST_CASE(test_squeeze_transpose)
{
migraphx::shape s1{migraphx::shape::float_type, {4, 4, 1}, {4, 1, 4}};
migraphx::shape s2{migraphx::shape::float_type, {4, 4}, {4, 1}};
expect_shape(s2, migraphx::make_op("squeeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_squeeze_multibroadcast)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 1, 4}, {0, 1, 1, 0}};
migraphx::shape s2{migraphx::shape::float_type, {2, 3, 4}, {0, 1, 0}};
expect_shape(s2, migraphx::make_op("squeeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_squeeze_slice)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 1, 4}, {108, 36, 6, 1}};
migraphx::shape s2{migraphx::shape::float_type, {2, 3, 4}, {108, 36, 1}};
expect_shape(s2, migraphx::make_op("squeeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_squeeze_negative_axis)
{
migraphx::shape s1{migraphx::shape::float_type, {4, 1, 3, 1, 3}};
......@@ -1492,6 +1541,55 @@ TEST_CASE(test_unsqueeze_scalar_tensor2)
throws_shape(migraphx::make_op("unsqueeze", {{"axes", {-2}}}), s);
}
TEST_CASE(test_unsqueeze_transpose)
{
migraphx::shape s1{migraphx::shape::float_type, {4, 4, 3}, {12, 1, 4}};
migraphx::shape s2{migraphx::shape::float_type, {4, 4, 1, 3}, {12, 1, 1, 4}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_unsqueeze_multibroadcast)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}, {0, 1, 0}};
migraphx::shape s2{migraphx::shape::float_type, {2, 3, 1, 4}, {0, 1, 1, 0}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_unsqueeze_slice)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}, {108, 36, 1}};
migraphx::shape s2{migraphx::shape::float_type, {2, 3, 1, 4}, {108, 36, 36, 1}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {2}}}), s1);
}
TEST_CASE(test_unsqueeze_axis_zero)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}};
migraphx::shape s2{migraphx::shape::float_type, {1, 2, 3, 4}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {0}}}), s1);
}
TEST_CASE(test_unsqueeze_axis_last)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}};
migraphx::shape s2{migraphx::shape::float_type, {2, 3, 4, 1}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {-1}}}), s1);
}
TEST_CASE(test_unsqueeze_multiple_axes_1)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}};
migraphx::shape s2{migraphx::shape::float_type, {1, 2, 3, 4, 1}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {0, -1}}}), s1);
}
TEST_CASE(test_unsqueeze_multiple_axes_2)
{
migraphx::shape s1{migraphx::shape::float_type, {2, 3, 4}};
migraphx::shape s2{migraphx::shape::float_type, {1, 1, 2, 3, 4}};
expect_shape(s2, migraphx::make_op("unsqueeze", {{"axes", {0, 1}}}), s1);
}
TEST_CASE(transpose_shape)
{
migraphx::shape input{migraphx::shape::float_type, {2, 2}};
......
......@@ -34,12 +34,12 @@ TEST_CASE(basic_graph_test)
EXPECT(migraphx::contains(test, "\"main:@0\"[label=\"@literal\"]"));
EXPECT(migraphx::contains(test, "\"y\"[label=\"@param:y\"]"));
EXPECT(migraphx::contains(test, "\"x\"[label=\"@param:x\"]"));
EXPECT(migraphx::contains(test, "\"main:@1\"[label=\"sum\"]"));
EXPECT(migraphx::contains(test, "\"main:@2\"[label=\"sum\"]"));
EXPECT(migraphx::contains(test, "\"x\" -> \"main:@1\""));
EXPECT(migraphx::contains(test, "\"y\" -> \"main:@1\""));
EXPECT(migraphx::contains(test, "\"main:@1\" -> \"main:@2\""));
EXPECT(migraphx::contains(test, "\"main:@0\" -> \"main:@2\""));
EXPECT(migraphx::contains(test, "\"main:@3\"[label=\"sum\"]"));
EXPECT(migraphx::contains(test, "\"main:@4\"[label=\"sum\"]"));
EXPECT(migraphx::contains(test, "\"x\" -> \"main:@3\""));
EXPECT(migraphx::contains(test, "\"y\" -> \"main:@3\""));
EXPECT(migraphx::contains(test, "\"main:@3\" -> \"main:@4\""));
EXPECT(migraphx::contains(test, "\"main:@0\" -> \"main:@4\""));
EXPECT(migraphx::contains(test, "[label=\"int64_type, {1}, {0}\"]"));
}
......
......@@ -25,10 +25,12 @@ endforeach()
add_py_test(ref test_cpu.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(save_load test_save_load.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(op test_op.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(shape test_shape.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(module_construct test_module_construct.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
if(MIGRAPHX_ENABLE_GPU)
add_py_test(gpu_offload test_gpu_offload.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(gpu test_gpu.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(array test_array.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(backend onnx_backend_test.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
add_py_test(op test_op.py WORKING_DIRECTORY ${TEST_ONNX_DIR})
endif()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment