Commit e12ee1f8 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

fix cppcheck error

parent a3affafc
...@@ -24,11 +24,11 @@ std::size_t capture_arguments(program& prog, ...@@ -24,11 +24,11 @@ std::size_t capture_arguments(program& prog,
const std::function<void(std::size_t, std::vector<argument>)>& func); const std::function<void(std::size_t, std::vector<argument>)>& func);
std::shared_ptr<std::vector<std::pair<float, float>>> capture_arguments_impl( std::shared_ptr<std::vector<std::pair<float, float>>> capture_arguments_impl(
program& prog, const target& t, const std::vector<std::string>& ins_names = {"dot"}); program& prog, const target& t, const std::vector<std::string>& ins_names = {"dot", "convolution"});
template <class T> template <class T>
std::shared_ptr<std::vector<std::pair<float, float>>> std::shared_ptr<std::vector<std::pair<float, float>>>
capture_arguments(program& prog, T&& t, const std::vector<std::string>& ins_names = {"dot"}) capture_arguments(program& prog, T&& t, const std::vector<std::string>& ins_names = {"dot", "convolution"})
{ {
static_assert(std::is_same<std::remove_cv_t<std::remove_reference_t<T>>, target>{} && static_assert(std::is_same<std::remove_cv_t<std::remove_reference_t<T>>, target>{} &&
std::is_lvalue_reference<T>{}, std::is_lvalue_reference<T>{},
......
...@@ -162,115 +162,12 @@ void quantize(program& prog, const std::vector<std::string>& ins_names) ...@@ -162,115 +162,12 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
void quantize(program& prog) { quantize(prog, {"all"}); } void quantize(program& prog) { quantize(prog, {"all"}); }
// int8 quantization is different from fp16 since int8 can only handle value static void quantize_ins(program& prog, instruction_ref ins,
// -128 ~ 127. To convert the float or double to int8, we need a scale and std::vector<instruction_ref>& converted_inputs,
// a shift, then the convert can be done as v_int8 = fp * scale + shift. const std::vector<std::pair<float, float>>& ins_quant_params)
// To simplify the changes, we consider shift as 0.0f for now.
void quantize_int8(program& prog,
const std::vector<std::string>& ins_names,
const std::vector<std::pair<float, float>>& quant_params)
{ {
for(size_t i = 0; i < quant_params.size(); i++) auto orig_type = ins->get_shape().type();
{
auto param = quant_params.at(i);
std::cout << "index = " << i << ", scale = " << param.first << "\t" << param.second
<< std::endl;
}
std::cout << std::endl;
// For now, we only support the int8 quantization of gemm and convolution
std::vector<std::string> op_names = {"dot", "convolution"};
if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
return (std::find(op_names.begin(), op_names.end(), name) != op_names.end());
}))
{
MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
}
std::size_t quant_param_index = 0;
std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
std::unordered_map<instruction_ref, std::size_t> map_index;
for(auto ins : iterator_for(prog))
{
if(not contains(ins_names, ins->name()))
{
continue;
}
shape::type_t orig_type = ins->get_shape().type();
// for the dot operator, there could be 2 or 3 input arguments
// if the 3rd argument is available, convert it to an int32.
std::vector<instruction_ref> converted_inputs;
// process all inputs, if input is a fp32 or fp64, convert it
// to a int8 type by adding a convert operator and replace
// the operator with the corresponding int8 version
auto inputs = ins->inputs(); auto inputs = ins->inputs();
std::vector<std::pair<float, float>> ins_quant_params;
for(auto input : inputs)
{
// calculate the index of each instruction to be quantized
if(map_index.count(input) == 0)
{
map_index[input] = quant_param_index++;
}
auto param = quant_params[map_index[input]];
ins_quant_params.push_back(param);
// In general, the target_type is int8, but for the dot
// operation, if it has 3 inputs, then the last one should
// be converted to int32_type
shape::type_t quant_type = shape::int8_type;
if(ins->name() == "dot" and inputs.size() == 3 and input == inputs.back())
{
quant_type = shape::int32_type;
}
auto s = input->get_shape();
if((s.type() == shape::float_type or s.type() == shape::double_type or
s.type() == shape::int32_type) and
s.type() != quant_type)
{
// if the input is a convert operator, uses its input
// as its current input
instruction_ref quant_input{};
if(input->name() == "convert")
{
auto tmp_ins = input->inputs().front();
if(tmp_ins->get_shape().type() == quant_type)
{
quant_input = input->inputs().front();
}
else
{
quant_input = insert_quant_ins(
prog, input, quant_type, map_quant_ins, param.first, param.second);
}
}
else
{
quant_input = insert_quant_ins(
prog, input, quant_type, map_quant_ins, param.first, param.second);
}
converted_inputs.push_back(quant_input);
}
else
{
converted_inputs.push_back(input);
}
}
// no change for the input, go to the next instruction
if(inputs == converted_inputs)
{
continue;
}
// When converting from other types to int8_type, there are parameters
// used as scale and shift(.0f), which will generate results diffrent from
// the original results. To adjust the output to be "correct(approximatly
// equal)", we need additional calculation for the adjustment
if(ins->name() == "dot") if(ins->name() == "dot")
{ {
auto dot_op = any_cast<op::dot>(ins->get_operator()); auto dot_op = any_cast<op::dot>(ins->get_operator());
...@@ -402,6 +299,102 @@ void quantize_int8(program& prog, ...@@ -402,6 +299,102 @@ void quantize_int8(program& prog,
{ {
MIGRAPHX_THROW("QUANTIZE_INT8: does not support operator" + ins->name()); MIGRAPHX_THROW("QUANTIZE_INT8: does not support operator" + ins->name());
} }
}
// int8 quantization is different from fp16 since int8 can only handle value
// -128 ~ 127. To convert the float or double to int8, we need a scale and
// a shift, then the convert can be done as v_int8 = fp * scale + shift.
// To simplify the changes, we consider shift as 0.0f for now.
void quantize_int8(program& prog,
const std::vector<std::string>& ins_names,
const std::vector<std::pair<float, float>>& quant_params)
{
// for(size_t i = 0; i < quant_params.size(); i++)
// {
// auto param = quant_params.at(i);
// std::cout << "index = " << i << ", scale = " << param.first << "\t" << param.second
// << std::endl;
// }
// std::cout << std::endl;
// For now, we only support the int8 quantization of gemm and convolution
std::vector<std::string> op_names = {"dot", "convolution"};
if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
return (std::find(op_names.begin(), op_names.end(), name) != op_names.end());
}))
{
MIGRAPHX_THROW("QUANTIZE_INT8: only support DOT and CONVOLUTION operation");
}
std::size_t quant_param_index = 0;
std::unordered_map<instruction_ref, instruction_ref> map_quant_ins;
std::unordered_map<instruction_ref, std::size_t> map_ins_index;
for(auto ins : iterator_for(prog))
{
if(not contains(ins_names, ins->name()))
{
continue;
}
// for the dot operator, there could be 2 or 3 input arguments
// if the 3rd argument is available, convert it to an int32.
std::vector<instruction_ref> converted_inputs;
// process all inputs, if input is a fp32 or fp64, convert it
// to a int8 type by adding a convert operator and replace
// the operator with the corresponding int8 version
auto inputs = ins->inputs();
std::vector<std::pair<float, float>> ins_quant_params;
for(auto input : inputs)
{
// calculate the index of each instruction to be quantized
std::size_t ins_index = (map_ins_index.count(input) > 0) ? map_ins_index[input] : quant_param_index++;
map_ins_index[input] = ins_index;
auto param = quant_params[map_ins_index[input]];
ins_quant_params.push_back(param);
// In general, the target_type is int8, but for the dot
// operation, if it has 3 inputs, then the last one should
// be converted to int32_type
shape::type_t quant_type = shape::int8_type;
if((ins->name() == "dot") and (inputs.size() == 3) and (input == inputs.back()))
{
quant_type = shape::int32_type;
}
auto s = input->get_shape();
if((s.type() == shape::float_type or s.type() == shape::double_type or
s.type() == shape::int32_type) and
s.type() != quant_type)
{
// if the input is a convert operator, uses its input
// as its current input
instruction_ref quant_input{};
if(input->name() == "convert" and input->inputs().front()->get_shape().type() == quant_type)
{
quant_input = input->inputs().front();
}
else
{
quant_input = insert_quant_ins(
prog, input, quant_type, map_quant_ins, param.first, param.second);
}
converted_inputs.push_back(quant_input);
}
else
{
converted_inputs.push_back(input);
}
}
// no change for the input, go to the next instruction
if(inputs == converted_inputs)
{
continue;
}
quantize_ins(prog, ins, converted_inputs, ins_quant_params);
} }
if(quant_param_index != quant_params.size()) if(quant_param_index != quant_params.size())
...@@ -462,7 +455,7 @@ std::size_t capture_arguments(program& prog, ...@@ -462,7 +455,7 @@ std::size_t capture_arguments(program& prog,
size_t num_quant_params = 0; size_t num_quant_params = 0;
// the int8 quantization only support dot and convolution // the int8 quantization only support dot and convolution
std::vector<std::string> op_names = {"dot", "convolution", "quant_dot", "quant_convolution"}; std::vector<std::string> op_names = {"dot", "convolution"};
if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) { if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
return std::find(op_names.begin(), op_names.end(), name) != op_names.end(); return std::find(op_names.begin(), op_names.end(), name) != op_names.end();
})) }))
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment