Commit dd26f1aa authored by Shucai Xiao's avatar Shucai Xiao
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into rnn_optimization

parents 4e3d06ab 4a3e493c
#ifndef MIGRAPHX_GUARD_OPERATORS_SINH_HPP
#define MIGRAPHX_GUARD_OPERATORS_SINH_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct sinh : unary
{
std::string name() const { return "sinh"; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_SLICE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SLICE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct slice
{
std::vector<int64_t> axes;
std::vector<int64_t> starts;
std::vector<int64_t> ends;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"), f(self.starts, "starts"), f(self.ends, "ends"));
}
std::string name() const { return "slice"; }
auto fix_index(const std::vector<std::size_t>& lens, std::size_t axis, int64_t index) const
{
int64_t r = std::min(index, static_cast<int64_t>(lens[axis]));
if(r < 0)
r += lens[axis];
return std::size_t(r);
}
auto compute_offset(const shape& s) const
{
const std::vector<std::size_t>& lens = s.lens();
const std::vector<std::size_t>& strides = s.strides();
auto offset = 0;
if(!axes.empty())
{
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
offset += fix_index(lens, axis, starts[i]) * strides[axis];
}
}
else
{
for(std::size_t axis = 0; axis < lens.size(); axis++)
{
offset += fix_index(lens, axis, starts[axis]) * strides[axis];
}
}
return offset;
}
shape compute_shape(std::vector<shape> inputs) const
{
auto input_shape = inputs[0];
auto t = input_shape.type();
const auto& old_lens = input_shape.lens();
const auto& old_strides = input_shape.strides();
if(starts.size() != axes.size() || axes.size() != ends.size())
{
MIGRAPHX_THROW("inconsistent sizes");
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
new_lens[axis] =
fix_index(old_lens, axis, ends[i]) - fix_index(old_lens, axis, starts[i]);
}
return shape{t, new_lens, old_strides};
}
argument compute(shape output_shape, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * output_shape.type_size();
return {std::move(output_shape), [=] { return input.data() + offset; }};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_SOFTMAX_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct softmax
{
std::string name() const { return "softmax"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs}.has(1).only_dims(4);
return inputs.at(0);
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_SQUEEZE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SQUEEZE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct squeeze
{
std::vector<int64_t> axes;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"));
}
std::string name() const { return "squeeze"; }
shape compute_shape(std::vector<shape> inputs) const
{
auto input_shape = inputs[0];
auto type = input_shape.type();
auto old_lens = input_shape.lens();
if(std::any_of(
axes.begin(), axes.end(), [&](auto axis) { return input_shape.lens()[axis] != 1; }))
{
MIGRAPHX_THROW("squeeze axis dimension should be equal to 1");
}
std::vector<std::size_t> new_lens;
if(axes.empty())
{
std::copy_if(old_lens.begin(),
old_lens.end(),
std::back_inserter(new_lens),
[](auto len) { return len != 1; });
}
else
{
for(std::size_t i = 0; i < old_lens.size(); i++)
{
if(std::find(axes.begin(), axes.end(), i) == axes.end())
{
new_lens.push_back(old_lens[i]);
}
}
}
if(new_lens.empty())
{
return shape{type};
}
else
{
return shape{type, new_lens};
}
}
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_SUB_HPP
#define MIGRAPHX_GUARD_OPERATORS_SUB_HPP
#include <array>
#include <migraphx/op/binary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct sub : binary
{
std::string name() const { return "sub"; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_TAN_HPP
#define MIGRAPHX_GUARD_OPERATORS_TAN_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct tan : unary
{
std::string name() const { return "tan"; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_TANH_HPP
#define MIGRAPHX_GUARD_OPERATORS_TANH_HPP
#include <array>
#include <migraphx/op/unary.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct tanh : unary
{
std::string name() const { return "tanh"; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_TRANSPOSE_HPP
#define MIGRAPHX_GUARD_OPERATORS_TRANSPOSE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct transpose
{
std::vector<int64_t> dims;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.dims, "dims"));
}
std::string name() const { return "transpose"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto input = inputs.at(0);
auto input_lens = input.lens();
auto input_strides = input.strides();
auto t = input.type();
if(dims.size() != input_lens.size())
{
MIGRAPHX_THROW("Permutation has wrong number of axes");
}
std::vector<int64_t> axes(dims.size());
std::iota(axes.begin(), axes.end(), 0);
if(!std::is_permutation(axes.begin(), axes.end(), dims.begin()))
{
MIGRAPHX_THROW("Invalid permutation");
}
std::vector<size_t> output_lens(input_lens.size());
std::vector<size_t> output_strides(input_lens.size());
for(std::size_t i = 0; i < output_lens.size(); i++)
{
output_lens[i] = input_lens[dims[i]];
output_strides[i] = input_strides[dims[i]];
}
return {t, output_lens, output_strides};
}
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_UNARY_HPP
#define MIGRAPHX_GUARD_OPERATORS_UNARY_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct unary
{
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs}.has(1);
return inputs.at(0);
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_UNSQUEEZE_HPP
#define MIGRAPHX_GUARD_OPERATORS_UNSQUEEZE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct unsqueeze
{
std::vector<int64_t> axes;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"));
}
std::string name() const { return "unsqueeze"; }
shape compute_shape(std::vector<shape> inputs) const
{
auto input_shape = inputs[0];
auto type = input_shape.type();
auto old_lens = input_shape.lens();
std::size_t new_size = old_lens.size() + axes.size();
std::vector<std::size_t> new_lens(new_size);
std::size_t p = 0;
for(std::size_t i = 0; i < new_size; i++)
{
if(std::find(axes.begin(), axes.end(), i) != axes.end())
{
new_lens[i] = 1;
}
else
{
new_lens[i] = old_lens[p++];
}
}
return shape{type, new_lens};
}
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
This diff is collapsed.
......@@ -71,6 +71,30 @@ bool all_of(const std::initializer_list<T>& c, const Predicate& p)
return std::all_of(c.begin(), c.end(), p);
}
template <class C, class Predicate>
bool any_of(const C& c, const Predicate& p)
{
return std::any_of(c.begin(), c.end(), p);
}
template <class T, class Predicate>
bool any_of(const std::initializer_list<T>& c, const Predicate& p)
{
return std::any_of(c.begin(), c.end(), p);
}
template <class C, class Predicate>
bool none_of(const C& c, const Predicate& p)
{
return std::none_of(c.begin(), c.end(), p);
}
template <class T, class Predicate>
bool none_of(const std::initializer_list<T>& c, const Predicate& p)
{
return std::none_of(c.begin(), c.end(), p);
}
template <class Range, class Iterator>
void copy(Range&& r, Iterator it)
{
......
......@@ -4,7 +4,7 @@
#include <string>
#include <vector>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
......
......@@ -17,6 +17,7 @@ struct program;
struct schedule
{
schedule_model model{};
bool enable = true;
std::string name() const { return "schedule"; }
void apply(program& p) const;
};
......
......@@ -36,7 +36,6 @@ struct onnx_parser
onnx_parser()
{
add_generic_op("MatMul", op::dot{});
add_generic_op("Relu", op::relu{});
add_generic_op("Sigmoid", op::sigmoid{});
add_generic_op("Abs", op::abs{});
......@@ -77,6 +76,7 @@ struct onnx_parser
add_mem_op("Reshape", &onnx_parser::parse_reshape);
add_mem_op("Flatten", &onnx_parser::parse_flatten);
add_mem_op("Gemm", &onnx_parser::parse_gemm);
add_mem_op("MatMul", &onnx_parser::parse_matmul);
add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
add_mem_op("Softmax", &onnx_parser::parse_softmax);
add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
......@@ -154,42 +154,48 @@ struct onnx_parser
});
}
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1)
{
// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
if(s0.size() > s1.size())
{
s0.swap(s1);
}
std::vector<std::size_t> out_lens(s1);
auto offset = s1.size() - s0.size();
std::transform(s0.begin(),
s0.end(),
s1.begin() + offset,
out_lens.begin() + offset,
[](auto a, auto b) { return std::max(a, b); });
return out_lens;
}
template <class T>
instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
{
if(arg0->get_shape().lens() != arg1->get_shape().lens())
{
// Example:
// s0 = (3,2,4,5) and s1 = (2,1,1)
//
// In this case we need to broadcast (:,1,1) portion of
// s1 plus broadcast the 1st dimension of s1
// giving output_lens = (3,2,4,5)
//
// Another example:
// s0 = (3,2,1,5) and s1 = (2,7,5)
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
//
// Get lengths for both arguments
const std::vector<std::size_t>* s0 = &arg0->get_shape().lens();
const std::vector<std::size_t>* s1 = &arg1->get_shape().lens();
// Make sure s0 is the smaller size
if(s0->size() > s1->size())
std::swap(s0, s1);
std::vector<std::size_t> output_lens(*s1);
auto offset = s1->size() - s0->size();
std::transform(s0->begin(),
s0->end(),
s1->begin() + offset,
output_lens.begin() + offset,
[](auto a, auto b) { return std::max(a, b); });
auto l0 = prog.add_instruction(op::multibroadcast{output_lens}, arg0);
auto l1 = prog.add_instruction(op::multibroadcast{output_lens}, arg1);
auto s0 = arg0->get_shape().lens();
auto s1 = arg1->get_shape().lens();
auto out_lens = compute_broadcasted_lens(s0, s1);
auto l0 = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
auto l1 = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
return prog.add_instruction(x, l0, l1);
}
else
......@@ -500,19 +506,80 @@ struct onnx_parser
auto out_lens = l1->get_shape().lens();
out_lens.back() = l2->get_shape().lens().back();
auto l3 = args[2];
if(!std::equal(
out_lens.begin(), out_lens.end(), args[2]->get_shape().lens().begin()) &&
out_lens.size() > 2)
auto l3_lens = l3->get_shape().lens();
if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
{
l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
}
return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
}
}
return prog.add_instruction(op::dot{alpha}, l1, l2);
}
instruction_ref
parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
{
auto l0 = args[0];
auto l1 = args[1];
auto l0_lens = l0->get_shape().lens();
auto l1_lens = l1->get_shape().lens();
// args[0] is a vector, prepend 1 to the shape
bool is_a_prepended = false;
if(l0_lens.size() == 1)
{
is_a_prepended = true;
l0_lens.insert(l0_lens.begin(), 1);
l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
}
bool is_b_appended = false;
if(l1_lens.size() == 1)
{
is_b_appended = true;
l1_lens.push_back(1);
l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
}
instruction_ref bl0 = l0;
instruction_ref bl1 = l1;
if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
{
auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
l0_broadcasted_lens = output_lens;
l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
l1_broadcasted_lens = output_lens;
l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
if(l0_lens != l0_broadcasted_lens)
{
bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
}
if(l1_lens != l1_broadcasted_lens)
{
bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
}
}
auto dot_res = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
if(is_a_prepended)
{
dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
--num_axis;
}
if(is_b_appended)
{
dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
}
return dot_res;
}
instruction_ref
parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
......
#include <migraphx/op/load.hpp>
#include "memory_coloring_impl.hpp"
namespace migraphx {
......
......@@ -3,7 +3,6 @@
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_config.hpp>
#include <migraphx/config.hpp>
......
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/target.hpp>
#include <migraphx/env.hpp>
#include <migraphx/ranges.hpp>
......
#include <migraphx/schedule.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/identity.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/functional.hpp>
......@@ -341,6 +341,8 @@ struct stream_info
void schedule::apply(program& p) const
{
if(not enable)
return;
stream_info si;
auto last = std::prev(p.end());
si.accumulate_weights(last, model);
......
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/literal.hpp>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment