Unverified Commit dae94657 authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into jit-reduce-reg

parents b013d991 56c43445
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include "migraphx/make_op.hpp"
#include <migraphx/gpu/mlir.hpp> #include <migraphx/gpu/mlir.hpp>
#ifdef MIGRAPHX_MLIR #ifdef MIGRAPHX_MLIR
...@@ -31,7 +32,13 @@ ...@@ -31,7 +32,13 @@
#include <mlir-c/Dialect/MIGraphX.h> #include <mlir-c/Dialect/MIGraphX.h>
#include <mlir-c/IntegerSet.h> #include <mlir-c/IntegerSet.h>
#include <mlir-c/Pass.h> #include <mlir-c/Pass.h>
#include <mlir-c/Registration.h> #include <mutex>
#if !defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) || MLIR_MIGRAPHX_DIALECT_API_VERSION != 3
#warning "Incompatible version of rocMLIR library used, disabling"
#undef MIGRAPHX_MLIR
#else
#include <mlir-c/RegisterRocMLIR.h>
#endif
#endif #endif
#include <migraphx/env.hpp> #include <migraphx/env.hpp>
...@@ -43,15 +50,12 @@ ...@@ -43,15 +50,12 @@
#include <migraphx/gpu/code_object_op.hpp> #include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device_name.hpp> #include <migraphx/gpu/device_name.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/perfdb.hpp> #include <migraphx/gpu/perfdb.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <deque> #include <deque>
#include <variant> #include <variant>
#if defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) && MLIR_MIGRAPHX_DIALECT_API_VERSION >= 2
#define MIGRAPHX_MLIR_BARE_POINTER
#endif
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
...@@ -99,7 +103,10 @@ struct mlir_handle ...@@ -99,7 +103,10 @@ struct mlir_handle
mlir_handle(T p) : handle(ptr{p}) {} mlir_handle(T p) : handle(ptr{p}) {}
T get() const { return handle.get().get(); } T get() const
{
return handle.get().get(); // NOLINT(readability-redundant-smartptr-get)
}
T release() { return handle.release().get(); } T release() { return handle.release().get(); }
...@@ -163,9 +170,11 @@ struct mlir_program ...@@ -163,9 +170,11 @@ struct mlir_program
location(mlirLocationUnknownGet(ctx.get())), location(mlirLocationUnknownGet(ctx.get())),
mmodule(mlirModuleCreateEmpty(location)) mmodule(mlirModuleCreateEmpty(location))
{ {
MlirDialectHandle mixr_handle = mlirGetDialectHandle__migraphx__(); MlirDialectRegistry registry = mlirDialectRegistryCreate();
mlirDialectHandleRegisterDialect(mixr_handle, ctx.get()); mlirRegisterRocMLIRDialects(registry);
mlirRegisterAllDialects(ctx.get()); mlirContextAppendDialectRegistry(ctx.get(), registry);
mlirContextLoadAllAvailableDialects(ctx.get());
mlirDialectRegistryDestroy(registry);
mlirContextSetAllowUnregisteredDialects(ctx.get(), true /*allow*/); mlirContextSetAllowUnregisteredDialects(ctx.get(), true /*allow*/);
} }
...@@ -370,7 +379,11 @@ struct mlir_program ...@@ -370,7 +379,11 @@ struct mlir_program
mlir_operation_state& add_results(const std::vector<shape>& outputs) mlir_operation_state& add_results(const std::vector<shape>& outputs)
{ {
auto x = prog->make_tensors(outputs); std::vector<shape> reshaped(outputs.size());
std::transform(outputs.begin(), outputs.end(), reshaped.begin(), [](const shape& r) {
return shape{r.type(), r.lens()};
});
auto x = prog->make_tensors(reshaped);
mlirOperationStateAddResults(&op_state, x.size(), x.data()); mlirOperationStateAddResults(&op_state, x.size(), x.data());
return *this; return *this;
} }
...@@ -443,7 +456,8 @@ struct mlir_program ...@@ -443,7 +456,8 @@ struct mlir_program
auto ops = create_operation_state("func.func"); auto ops = create_operation_state("func.func");
ops.add_attributes({{"function_type", make_function_type(inputs, outputs)}, ops.add_attributes({{"function_type", make_function_type(inputs, outputs)},
{"sym_name", std::string("main")}, {"sym_name", std::string("main")},
{"kernel", std::string("mixr")}}); {"kernel", std::string("mixr")},
{"arch", target_arch}});
ops.add_region(std::move(region)); ops.add_region(std::move(region));
insert(body, std::move(ops)); insert(body, std::move(ops));
...@@ -502,11 +516,13 @@ struct mlir_program ...@@ -502,11 +516,13 @@ struct mlir_program
{ {
pp = pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()}; problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
std::string tuned = get_tune_params(); // check if HW supports xdlops
auto target_chip = trim(split_string(target_arch, ':').front());
bool xdlops = contains(get_xdlops_archs(), target_chip);
std::string tuned = get_tune_params(xdlops);
if(not tuned.empty()) if(not tuned.empty())
ops.add_attributes({{"perf_config", tuned}}); ops.add_attributes({{"perf_config", tuned}});
// check if HW supports xdlops if(xdlops)
if(contains(get_xdlops_archs(), target_name))
ops.add_attributes({{"xdlopsV2", true}}); ops.add_attributes({{"xdlopsV2", true}});
} }
...@@ -530,7 +546,7 @@ struct mlir_program ...@@ -530,7 +546,7 @@ struct mlir_program
// 1st pipeline to call // 1st pipeline to call
mlirMIGraphXAddHighLevelPipeline(pm.get()); mlirMIGraphXAddHighLevelPipeline(pm.get());
// 2nd pipeline to call // 2nd pipeline to call
mlirMIGraphXAddBackendPipeline(pm.get(), target_name.c_str(), "amdgcn-amd-amdhsa", ""); mlirMIGraphXAddBackendPipeline(pm.get(), target_arch.c_str());
mlirPassManagerRun(pm.get(), mmodule.get()); mlirPassManagerRun(pm.get(), mmodule.get());
code_object_op op{}; code_object_op op{};
...@@ -540,16 +556,7 @@ struct mlir_program ...@@ -540,16 +556,7 @@ struct mlir_program
return op; return op;
} }
void find_target() void find_target() { target_arch = get_device_name(); }
{
std::string tname = get_device_name();
// HACK: Since MLIR can't handle the full target name
target_name = trim(split_string(tname, ':').front());
if(tname.size() != target_name.size())
std::cout
<< "*************** WARNING: MLIR may not compile the correct target features for: "
<< tname << std::endl;
}
std::pair<std::size_t, std::size_t> get_launch_params() const std::pair<std::size_t, std::size_t> get_launch_params() const
{ {
...@@ -571,14 +578,14 @@ struct mlir_program ...@@ -571,14 +578,14 @@ struct mlir_program
MIGRAPHX_THROW("Failed to compile mlir program"); MIGRAPHX_THROW("Failed to compile mlir program");
} }
std::string get_tune_params() { return get_mlir_perf_for_conv(pp); } std::string get_tune_params(bool xdlops) { return get_mlir_perf_for_conv(pp, xdlops); }
mlir_context ctx; mlir_context ctx;
MlirLocation location; MlirLocation location;
mlir_module mmodule; mlir_module mmodule;
problem_params pp; problem_params pp;
std::deque<std::string> strings{}; std::deque<std::string> strings{};
std::string target_name; std::string target_arch;
}; };
std::string dump_mlir(const module& m) std::string dump_mlir(const module& m)
...@@ -589,11 +596,61 @@ std::string dump_mlir(const module& m) ...@@ -589,11 +596,61 @@ std::string dump_mlir(const module& m)
return mlir_print(&mlirOperationPrint, mod_op); return mlir_print(&mlirOperationPrint, mod_op);
} }
code_object_op compile_mlir(const context&, const module& m) void adjust_param_shapes(module& m, const std::vector<instruction_ref>& inputs)
{ {
auto names = m.get_parameter_names();
std::sort(names.begin(), names.end());
for(auto i : range(names.size()))
{
const auto& name = names[i];
const auto& input = inputs[i]->get_shape();
auto param = m.get_parameter(name);
if(input.standard())
continue;
auto lens = input.lens();
auto strides = input.strides();
std::vector<operation> ops;
if(input.transposed())
{
auto perm = find_permutation(input);
auto iperm = invert_permutation(perm);
lens = reorder_dims(lens, iperm);
strides = reorder_dims(strides, iperm);
ops.push_back(make_op("transpose", {{"permutation", perm}}));
}
if(input.broadcasted())
{
std::transform(lens.begin(),
lens.end(),
strides.begin(),
lens.begin(),
[](auto len, auto stride) -> std::size_t {
if(stride == 0)
return 1;
return len;
});
ops.push_back(make_op("multibroadcast", {{"out_lens", input.lens()}}));
}
auto new_param =
std::accumulate(ops.begin(),
ops.end(),
m.add_parameter(name + ".0", shape{input.type(), lens}),
[&](auto x, auto op) { return m.insert_instruction(param, op, x); });
m.replace_instruction(param, new_param);
m.remove_instruction(param);
}
}
code_object_op compile_mlir(const context&, module m, const std::vector<instruction_ref>& inputs)
{
adjust_param_shapes(m, inputs);
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{}); const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
if(trace) if(trace)
std::cout << m << std::endl; std::cout << m << std::endl;
// set mutex while llvm thread support is disabled.
static std::mutex g_mlirc_mutex; // NOLINT
const std::lock_guard<std::mutex> lock(g_mlirc_mutex);
mlir_program mp; mlir_program mp;
mp.find_target(); mp.find_target();
mp.parse(m); mp.parse(m);
...@@ -613,46 +670,9 @@ instruction_ref insert_mlir(module& m, ...@@ -613,46 +670,9 @@ instruction_ref insert_mlir(module& m,
std::vector<instruction_ref> refs; std::vector<instruction_ref> refs;
std::size_t last = 0; std::size_t last = 0;
#ifdef MIGRAPHX_MLIR_BARE_POINTER
refs.reserve(inputs.size()); refs.reserve(inputs.size());
std::copy(inputs.begin(), inputs.end(), std::back_inserter(refs)); std::copy(inputs.begin(), inputs.end(), std::back_inserter(refs));
last = refs.size() - 1; last = refs.size() - 1;
#else
refs.reserve(inputs.size() * 15);
std::unordered_map<uint64_t, instruction_ref> literal_map{};
auto get_literal = [&](uint64_t value) {
auto fi = literal_map.find(value);
if(fi != literal_map.end())
return fi->second;
auto lit = m.add_literal(value);
literal_map.emplace(value, lit);
return lit;
};
for(auto input : inputs)
{
const size_t offset = 0;
auto s = input->get_shape();
last = refs.size();
refs.push_back(input);
refs.push_back(input);
refs.push_back(get_literal(offset)); // offset
// dim sizes
std::transform(s.lens().begin(),
s.lens().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
// dim strides
std::transform(s.strides().begin(),
s.strides().end(),
std::back_inserter(refs),
[&](const auto& lval) { return get_literal(lval); });
// refs.push_back(get_literal(1)); // G
}
#endif
co.expected_inputs = to_shapes(refs); co.expected_inputs = to_shapes(refs);
co.output_arg = last; co.output_arg = last;
return m.insert_instruction(ins, co, refs); return m.insert_instruction(ins, co, refs);
...@@ -662,13 +682,19 @@ instruction_ref insert_mlir(module& m, ...@@ -662,13 +682,19 @@ instruction_ref insert_mlir(module& m,
std::string dump_mlir(const module&) { return {}; } std::string dump_mlir(const module&) { return {}; }
code_object_op compile_mlir(const context&, const module&) { return {}; }
template <class T> template <class T>
void use(T&) void use(T&)
{ {
} }
// Disabling clang-tidy warning on non-real useage.
// NOLINTBEGIN(performance-unnecessary-value-param)
code_object_op compile_mlir(const context&, module, const std::vector<instruction_ref>&)
{
return {};
}
// NOLINTEND(performance-unnecessary-value-param)
instruction_ref instruction_ref
// cppcheck-suppress funcArgNamesDifferent // cppcheck-suppress funcArgNamesDifferent
insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&) insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&)
......
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <migraphx/stringutils.hpp> #include <migraphx/stringutils.hpp>
#include <migraphx/permutation.hpp> #include <migraphx/permutation.hpp>
#include <fstream> #include <fstream>
#include <mutex>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -88,6 +89,9 @@ std::string generate_miopen_config(const problem_params& pp) ...@@ -88,6 +89,9 @@ std::string generate_miopen_config(const problem_params& pp)
auto query_miopen_db(const std::string& query) auto query_miopen_db(const std::string& query)
{ {
static std::mutex g_db_mutex; // NOLINT
const std::lock_guard<std::mutex> lock(g_db_mutex);
// TODO: Store db as a static variable // TODO: Store db as a static variable
const auto dbpath = fs::path{"/opt"} / "rocm" / "share" / "miopen" / "db" / "miopen.db"; const auto dbpath = fs::path{"/opt"} / "rocm" / "share" / "miopen" / "db" / "miopen.db";
// Check if db file exists. // Check if db file exists.
...@@ -108,16 +112,17 @@ auto query_miopen_db(const std::string& query) ...@@ -108,16 +112,17 @@ auto query_miopen_db(const std::string& query)
} // namespace } // namespace
std::string get_mlir_perf_for_conv(const problem_params& pp) std::string get_mlir_perf_for_conv(const problem_params& pp, bool xdlops)
{ {
std::string query = "select P.* \ std::string solver = xdlops ? "ConvMlirIgemmFwdXdlops" : "ConvMlirIgemmFwd";
std::string query = "select P.* \
from perf_db P, config C \ from perf_db P, config C \
where P.config = C.id AND \ where P.config = C.id AND \
P.solver = 'ConvMlirIgemmFwdXdlops' AND \ P.solver = '${solver}' AND \
${config}"; ${config}";
auto results = auto results = query_miopen_db(
query_miopen_db(interpolate_string(query, {{"config", generate_miopen_config(pp)}})); interpolate_string(query, {{"config", generate_miopen_config(pp)}, {"solver", solver}}));
if(results.empty()) if(results.empty())
return ""; return "";
return results.front().at("params"); return results.front().at("params");
......
...@@ -51,17 +51,20 @@ struct layernorm_base ...@@ -51,17 +51,20 @@ struct layernorm_base
} }
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N); check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0); auto s = inputs.at(0);
auto t = s.type();
if(not mods.empty())
t = mods.front()->get_output_shapes().front().type();
if(s.scalar()) if(s.scalar())
{ {
return s; return s;
} }
else if(s.broadcasted()) else if(s.broadcasted())
{ {
return {s.type(), s.lens()}; return {t, s.lens()};
} }
else else
{ {
return s.with_lens(s.lens()); return s.with_lens(t, s.lens());
} }
} }
}; };
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/quant_convolution.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/generate.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_quant_convolution::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(4).standard();
return op.normalize_compute_shape({inputs.at(0), inputs.at(1)});
}
argument miopen_quant_convolution::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
auto x_desc = make_tensor(args[0].get_shape(), int8_x4_format);
auto w_desc = make_tensor(args[1].get_shape(), int8_x4_format);
auto y_desc = make_tensor(output_shape);
float alpha = 1;
float beta = 0;
auto status = miopenConvolutionForward(ctx.get_stream().get_miopen(),
&alpha,
x_desc.get(),
args[0].implicit(),
w_desc.get(),
args[1].implicit(),
cd.get(),
algo,
&beta,
y_desc.get(),
args[3].implicit(),
args[2].implicit(),
args[2].get_shape().bytes());
if(status != miopenStatusSuccess)
{
MIGRAPHX_THROW("QUANT_CONVOLUTION: run convolution forward failed");
}
return args[3];
}
shape miopen_quant_convolution::find(context& ctx,
const shape& output_shape,
std::vector<shape> inputs)
{
shape workspace_shape{};
auto x_desc = make_tensor(inputs[0], int8_x4_format);
auto w_desc = make_tensor(inputs[1], int8_x4_format);
auto y_desc = make_tensor(output_shape);
std::size_t workspace_size = 0;
miopenConvolutionForwardGetWorkSpaceSize(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&workspace_size);
workspace_shape = shape{shape::int8_type, {workspace_size}};
auto x_shape = inputs[0];
auto w_shape = inputs[1];
if(int8_x4_format)
{
x_shape = pack_int8_shape(x_shape);
w_shape = pack_int8_shape(w_shape);
}
auto x = to_gpu(generate_argument(x_shape));
auto w = to_gpu(generate_argument(w_shape));
auto y = allocate_gpu(output_shape);
auto workspace = allocate_gpu(workspace_shape);
int algo_count = 1;
miopenConvAlgoPerf_t perf;
auto status = miopenFindConvolutionForwardAlgorithm(ctx.get_stream().get_miopen(),
x_desc.get(),
x.implicit(),
w_desc.get(),
w.implicit(),
cd.get(),
y_desc.get(),
y.implicit(),
1,
&algo_count,
&perf,
workspace.implicit(),
workspace_size,
false);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: find convolution failed");
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}};
}
void miopen_quant_convolution::finalize(context& ctx,
const shape& output_shape,
std::vector<shape> inputs)
{
if(cd == nullptr)
cd = make_conv(op);
if(solution_id == 0)
{
// Check that workspace hasn't changed
auto size = inputs.at(2).bytes();
auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen Quant Convolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(inputs[0], int8_x4_format);
auto w_desc = make_tensor(inputs[1], int8_x4_format);
auto y_desc = make_tensor(output_shape);
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Quant Convolution: compile solution failed");
}
shape miopen_quant_convolution::pack_int8_shape(const shape& s) const
{
if(s.type() != shape::int8_type)
{
MIGRAPHX_THROW("PACK_INT8_SHAPE: only process int8_type");
}
auto lens = s.lens();
auto strides = s.strides();
lens[1] = (lens[1] + 3) / 4 * 4;
strides[0] = strides[1] * lens[1];
return {s.type(), lens, strides};
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -35,13 +35,13 @@ ...@@ -35,13 +35,13 @@
#include <migraphx/fuse_pointwise.hpp> #include <migraphx/fuse_pointwise.hpp>
#include <migraphx/inline_module.hpp> #include <migraphx/inline_module.hpp>
#include <migraphx/insert_pad.hpp> #include <migraphx/insert_pad.hpp>
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/memory_coloring.hpp> #include <migraphx/memory_coloring.hpp>
#include <migraphx/normalize_ops.hpp> #include <migraphx/normalize_ops.hpp>
#include <migraphx/preallocate_param.hpp> #include <migraphx/preallocate_param.hpp>
#include <migraphx/propagate_constant.hpp> #include <migraphx/propagate_constant.hpp>
#include <migraphx/register_target.hpp> #include <migraphx/register_target.hpp>
#include <migraphx/replace_allocate.hpp> #include <migraphx/replace_allocate.hpp>
#include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/rewrite_gelu.hpp> #include <migraphx/rewrite_gelu.hpp>
#include <migraphx/rewrite_pooling.hpp> #include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp> #include <migraphx/rewrite_quantization.hpp>
...@@ -51,6 +51,7 @@ ...@@ -51,6 +51,7 @@
#include <migraphx/simplify_qdq.hpp> #include <migraphx/simplify_qdq.hpp>
#include <migraphx/simplify_reshapes.hpp> #include <migraphx/simplify_reshapes.hpp>
#include <migraphx/gpu/allocation_model.hpp> #include <migraphx/gpu/allocation_model.hpp>
#include <migraphx/gpu/compile_miopen.hpp>
#include <migraphx/gpu/compile_ops.hpp> #include <migraphx/gpu/compile_ops.hpp>
#include <migraphx/gpu/concat_gpu_opt.hpp> #include <migraphx/gpu/concat_gpu_opt.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
...@@ -71,6 +72,7 @@ namespace gpu { ...@@ -71,6 +72,7 @@ namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_SCHEDULE_PASS) MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_SCHEDULE_PASS)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_POINTWISE_FUSION) MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_POINTWISE_FUSION)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_ENABLE_NHWC)
struct id_pass struct id_pass
{ {
...@@ -110,8 +112,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -110,8 +112,6 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{}, dead_code_elimination{},
insert_pad{}, insert_pad{},
dead_code_elimination{}, dead_code_elimination{},
rewrite_batchnorm{},
dead_code_elimination{},
rewrite_rnn{}, rewrite_rnn{},
dead_code_elimination{}, dead_code_elimination{},
inline_module{}, inline_module{},
...@@ -123,6 +123,9 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -123,6 +123,9 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{}, dead_code_elimination{},
simplify_algebra{}, simplify_algebra{},
simplify_reshapes{}, simplify_reshapes{},
enable_pass(enabled(MIGRAPHX_ENABLE_NHWC{}), layout_nhwc{}),
dead_code_elimination{},
simplify_reshapes{},
simplify_algebra{}, simplify_algebra{},
prefuse_ops{}, prefuse_ops{},
dead_code_elimination{}, dead_code_elimination{},
...@@ -139,14 +142,16 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti ...@@ -139,14 +142,16 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
dead_code_elimination{}, dead_code_elimination{},
eliminate_concat{concat_gpu_optimization{}}, eliminate_concat{concat_gpu_optimization{}},
dead_code_elimination{}, dead_code_elimination{},
pack_int8_args{}, compile_miopen{&gctx},
dead_code_elimination{}, dead_code_elimination{},
adjust_allocation{gpu_allocation_model{}}, pack_int8_args{},
dead_code_elimination{}, dead_code_elimination{},
fuse_ops{&ctx, options.fast_math}, fuse_ops{&ctx, options.fast_math},
dead_code_elimination{}, dead_code_elimination{},
replace_allocate{gpu_allocation_model{}, options.offload_copy}, replace_allocate{gpu_allocation_model{}, options.offload_copy},
dead_code_elimination{}, dead_code_elimination{},
adjust_allocation{gpu_allocation_model{}},
dead_code_elimination{},
compile_ops{&ctx}, compile_ops{&ctx},
dead_code_elimination{}, dead_code_elimination{},
write_literals{&ctx}, write_literals{&ctx},
......
...@@ -26,15 +26,12 @@ ...@@ -26,15 +26,12 @@
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/dfor.hpp> #include <migraphx/dfor.hpp>
#include <migraphx/op/identity.hpp> #include <migraphx/op/identity.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/convolution.hpp> #include <migraphx/op/convolution.hpp>
#include <migraphx/op/deconvolution.hpp> #include <migraphx/op/deconvolution.hpp>
#include <migraphx/op/quant_convolution.hpp> #include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp> #include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp> #include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp> #include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/logsoftmax.hpp> #include <migraphx/op/logsoftmax.hpp>
#include <migraphx/op/loop.hpp> #include <migraphx/op/loop.hpp>
#include <migraphx/op/lrn.hpp> #include <migraphx/op/lrn.hpp>
...@@ -75,84 +72,6 @@ typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::ena ...@@ -75,84 +72,6 @@ typename std::conditional_t<std::is_integral<T>{}, std::make_signed<T>, std::ena
return x; return x;
} }
//
// ref implemenataion of batch norm for inference
//
// inputs are:
// args[0] -> input data buffer
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
// args[4] -> bias
//
// The equation to compute batch norm for inference is:
//
// output[i] = bias + gamma * (input[i] + mean) / sqrt(variance + epsilon)
//
// the input data format should be nchw
//
struct ref_batch_norm_inference
{
op::batch_norm_inference op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "ref::batch_norm_inference"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{
argument output{output_shape};
double epsilon = op.epsilon;
auto input = args[0];
auto arg_gamma = args[1];
auto arg_bias = args[2];
auto mini_batch_mean = args[3];
auto mini_batch_variance = args[4];
if(op.bn_mode == op::batch_norm_inference::spatial)
{
visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
[&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
par_for(output_shape.elements(), [&](auto i) {
auto idx = output_shape.multi(i);
auto c = idx[1];
assert((variance[c] + epsilon) > 0);
result[i] =
gamma[c] * (buffer[i] - mean[c]) / std::sqrt(variance[c] + epsilon) +
bias[c];
});
});
}
if(op.bn_mode == op::batch_norm_inference::per_activation)
{
visit_all(output, input, mini_batch_mean, mini_batch_variance, arg_gamma, arg_bias)(
[&](auto result, auto buffer, auto mean, auto variance, auto gamma, auto bias) {
par_for(output_shape.elements(), [&](auto i) {
auto idx = output_shape.multi(i);
idx[0] = 0;
auto index = output_shape.index(idx);
assert((variance[index] + epsilon) > 0);
result[i] = gamma[index] * (buffer[i] - mean[index]) /
std::sqrt(variance[index] + epsilon) +
bias[index];
});
});
}
return output;
}
};
MIGRAPHX_REGISTER_OP(ref_batch_norm_inference)
struct ref_lrn struct ref_lrn
{ {
op::lrn op; op::lrn op;
...@@ -237,15 +156,16 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -237,15 +156,16 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
argument compute(context&, shape output_shape, std::vector<argument> args) const argument compute(context&, shape output_shape, std::vector<argument> args) const
{ {
std::vector<std::size_t> padding; std::vector<std::size_t> padding;
if(op.use_dynamic_same_auto_pad) if(op.padding_mode != op::padding_mode_t::default_)
{ {
auto input_lens = args[0].get_shape().lens(); auto input_lens = args[0].get_shape().lens();
std::vector<std::size_t> img_lens{input_lens.begin() + 2, input_lens.end()};
auto weights_lens = args[1].get_shape().lens(); auto weights_lens = args[1].get_shape().lens();
std::vector<std::size_t> k_lens{weights_lens.begin() + 2, weights_lens.end()}; padding =
padding = calc_dyn_auto_pad(img_lens, k_lens, op.stride, op.dilation); op.padding_mode == op::same_upper
output_shape = ? calc_dyn_auto_pad(input_lens, weights_lens, op.stride, op.dilation, true)
compute_padded_shape({args.at(0).get_shape(), args.at(1).get_shape()}, padding); : calc_dyn_auto_pad(input_lens, weights_lens, op.stride, op.dilation, false);
output_shape = compute_padded_shape(
args[0].get_shape(), args[1].get_shape(), padding, op.stride, op.dilation);
} }
else else
{ {
...@@ -313,34 +233,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>> ...@@ -313,34 +233,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
}); });
return result; return result;
} }
private:
/*!
* Used for dynamic auto padding since padding needs to be computed at evaulation time.
* \param inputs two fixed shape inputs [input_tensor, weights]
* \param padding from auto_pad calculation
*/
shape compute_padded_shape(const std::vector<shape>& inputs,
const std::vector<std::size_t>& padding) const
{
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; i++)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + op.dilation[i] * (weights.lens()[i + 2] - 1)) +
padding_factor) /
op.stride[i] +
1)));
}
return inputs[0].with_lens(output_lens);
}
}; };
struct ref_im2col struct ref_im2col
...@@ -491,9 +383,9 @@ struct ref_gemm ...@@ -491,9 +383,9 @@ struct ref_gemm
std::string name() const { return "ref::dot"; } std::string name() const { return "ref::dot"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); } shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const argument compute(context&, const dyn_output& dyn_out, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{dyn_out.computed_shape};
migemm(result, args[0], args[1], 1.0f, 0.0f); migemm(result, args[0], args[1], 1.0f, 0.0f);
return result; return result;
...@@ -537,65 +429,6 @@ struct ref_quant_gemm ...@@ -537,65 +429,6 @@ struct ref_quant_gemm
}; };
MIGRAPHX_REGISTER_OP(ref_gemm) MIGRAPHX_REGISTER_OP(ref_gemm)
struct leaky_relu_op
{
op::leaky_relu op;
std::string name() const { return "ref::leaky_relu"; }
auto fcn() const
{
auto a = op.alpha;
return [a](auto x) { return x > 0 ? x : x * a; };
}
};
struct elu_op
{
op::elu op;
std::string name() const { return "ref::elu"; }
auto fcn() const
{
auto a = op.alpha;
return [a](auto x) { return x > 0 ? x : a * std::expm1(x); };
}
};
template <typename Op>
struct ref_unary : auto_register_op<ref_unary<Op>>
{
ref_unary() = default;
template <class T>
ref_unary(T pop) : op(Op{std::move(pop)})
{
}
Op op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op.op, f);
}
std::string name() const { return op.name(); }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(1);
const auto& s = inputs.at(0);
return {s.type(), s.lens()};
}
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
visit_all(result, args[0])([&](auto output, auto input) {
assert(input.get_shape().standard());
std::transform(input.begin(), input.end(), output.begin(), op.fcn());
});
return result;
}
};
template <class Op> template <class Op>
struct ref_softmax : auto_register_op<ref_softmax<Op>> struct ref_softmax : auto_register_op<ref_softmax<Op>>
{ {
...@@ -616,10 +449,10 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>> ...@@ -616,10 +449,10 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
{ {
return op.normalize_compute_shape(inputs); return op.normalize_compute_shape(inputs);
} }
argument compute(context&, const shape& output_shape, std::vector<argument> args) const argument compute(context&, const dyn_output& dyn_out, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{dyn_out.computed_shape};
auto batch_lens = output_shape.lens(); auto batch_lens = dyn_out.computed_shape.lens();
int64_t tuned_axis = tune_axis(args[0].get_shape().lens().size(), op.axis, op.name()); int64_t tuned_axis = tune_axis(args[0].get_shape().lens().size(), op.axis, op.name());
std::size_t n_dims = batch_lens[tuned_axis]; std::size_t n_dims = batch_lens[tuned_axis];
batch_lens[tuned_axis] = 1; batch_lens[tuned_axis] = 1;
...@@ -642,7 +475,7 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>> ...@@ -642,7 +475,7 @@ struct ref_softmax : auto_register_op<ref_softmax<Op>>
for(std::size_t j = 0; j < n_dims; ++j) for(std::size_t j = 0; j < n_dims; ++j)
{ {
idx[tuned_axis] = j; idx[tuned_axis] = j;
std::size_t index = output_shape.index(idx); std::size_t index = dyn_out.computed_shape.index(idx);
output[index] = std::exp(input[index] - batch_max[i]); output[index] = std::exp(input[index] - batch_max[i]);
} }
...@@ -731,16 +564,12 @@ struct ref_apply ...@@ -731,16 +564,12 @@ struct ref_apply
void init() void init()
{ {
apply_map["batch_norm_inference"] =
extend_op<ref_batch_norm_inference, op::batch_norm_inference>();
apply_map["convolution"] = extend_op<ref_convolution<op::convolution>, op::convolution>(); apply_map["convolution"] = extend_op<ref_convolution<op::convolution>, op::convolution>();
apply_map["dot"] = extend_op<ref_gemm, op::dot>(); apply_map["dot"] = extend_op<ref_gemm, op::dot>();
apply_map["quant_dot"] = extend_op<ref_quant_gemm, op::quant_dot>(); apply_map["quant_dot"] = extend_op<ref_quant_gemm, op::quant_dot>();
apply_map["quant_convolution"] = apply_map["quant_convolution"] =
extend_op<ref_convolution<op::quant_convolution>, op::quant_convolution>(); extend_op<ref_convolution<op::quant_convolution>, op::quant_convolution>();
apply_map["elu"] = extend_op<ref_unary<elu_op>, op::elu>();
apply_map["im2col"] = extend_op<ref_im2col, op::im2col>(); apply_map["im2col"] = extend_op<ref_im2col, op::im2col>();
apply_map["leaky_relu"] = extend_op<ref_unary<leaky_relu_op>, op::leaky_relu>();
apply_map["logsoftmax"] = extend_op<ref_softmax<op::logsoftmax>, op::logsoftmax>(); apply_map["logsoftmax"] = extend_op<ref_softmax<op::logsoftmax>, op::logsoftmax>();
apply_map["lrn"] = extend_op<ref_lrn, op::lrn>(); apply_map["lrn"] = extend_op<ref_lrn, op::lrn>();
apply_map["pad"] = extend_op<ref_pad, op::pad>(); apply_map["pad"] = extend_op<ref_pad, op::pad>();
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
*/ */
#include <migraphx/tf/op_parser.hpp> #include <migraphx/tf/op_parser.hpp>
#include <migraphx/tf/tf_parser.hpp> #include <migraphx/tf/tf_parser.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp> #include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
...@@ -38,16 +39,37 @@ struct parse_batchnorm : op_parser<parse_batchnorm> ...@@ -38,16 +39,37 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
instruction_ref parse(const op_desc& /*opd*/, instruction_ref parse(const op_desc& /*opd*/,
const tf_parser& /*parser*/, const tf_parser& /*parser*/,
tf_parser::node_info info, tf_parser::node_info info,
const std::vector<instruction_ref>& args) const std::vector<instruction_ref> args) const
{ {
float epsilon = 1e-5f; // different default epsilon than from ONNX
float momentum = 0.9f; float epsilon = 1e-4f;
if(contains(info.attributes, "epsilon")) if(contains(info.attributes, "epsilon"))
{ {
epsilon = info.attributes.at("epsilon").f(); epsilon = info.attributes.at("epsilon").f();
} }
auto op = make_op("batch_norm_inference", {{"epsilon", epsilon}, {"momentum", momentum}});
return info.add_instruction(op, args); auto x_lens = args[0]->get_shape().lens();
auto x_type = args[0]->get_shape().type();
// unsqueeze tensors of shape (C) to broadcast correctly
auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}});
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto scale_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[1]);
auto bias_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[2]);
auto mean_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[3]);
auto var_unsqueeze =
info.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1, 2}}}), args[4]);
auto numer = info.add_broadcastable_binary_op("sub", args[0], mean_unsqueeze);
auto var_eps = info.add_broadcastable_binary_op("add", var_unsqueeze, eps);
auto denom = info.add_broadcastable_binary_op("pow", var_eps, rt);
auto div0 = info.add_broadcastable_binary_op("div", numer, denom);
auto r0 = info.add_broadcastable_binary_op("mul", div0, scale_unsqueeze);
return info.add_broadcastable_binary_op("add", r0, bias_unsqueeze);
} }
}; };
......
...@@ -75,7 +75,6 @@ struct parse_conv : op_parser<parse_conv> ...@@ -75,7 +75,6 @@ struct parse_conv : op_parser<parse_conv>
const std::string& pad_mode = info.attributes.at("padding").s(); const std::string& pad_mode = info.attributes.at("padding").s();
if(pad_mode.find("SAME") != std::string::npos) if(pad_mode.find("SAME") != std::string::npos)
{ {
op.padding_mode = op::padding_mode_t::same;
std::vector<size_t> weight_dims = weights->get_shape().lens(); std::vector<size_t> weight_dims = weights->get_shape().lens();
size_t weight_h = weight_dims[2]; size_t weight_h = weight_dims[2];
size_t weight_w = weight_dims[3]; size_t weight_w = weight_dims[3];
...@@ -87,10 +86,6 @@ struct parse_conv : op_parser<parse_conv> ...@@ -87,10 +86,6 @@ struct parse_conv : op_parser<parse_conv>
op.padding = std::vector<size_t>(pads.begin(), pads.end()); op.padding = std::vector<size_t>(pads.begin(), pads.end());
} }
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
else if(pad_mode.find("EXPLICIT") != std::string::npos) else if(pad_mode.find("EXPLICIT") != std::string::npos)
{ {
std::vector<size_t> padding; std::vector<size_t> padding;
......
...@@ -80,7 +80,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv> ...@@ -80,7 +80,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
if(pad_mode.find("SAME") != std::string::npos) if(pad_mode.find("SAME") != std::string::npos)
{ {
op.padding_mode = op::padding_mode_t::same;
std::vector<size_t> weight_dims = weights->get_shape().lens(); std::vector<size_t> weight_dims = weights->get_shape().lens();
size_t weight_h = weight_dims[2]; size_t weight_h = weight_dims[2];
size_t weight_w = weight_dims[3]; size_t weight_w = weight_dims[3];
...@@ -101,10 +100,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv> ...@@ -101,10 +100,6 @@ struct parse_depthwiseconv : op_parser<parse_depthwiseconv>
op.padding[1] = pads[1]; op.padding[1] = pads[1];
} }
} }
else if(pad_mode.find("VALID") != std::string::npos)
{
op.padding_mode = op::padding_mode_t::valid;
}
} }
std::vector<int64_t> new_weights_shape; std::vector<int64_t> new_weights_shape;
......
...@@ -55,7 +55,8 @@ struct half_copy_host final : migraphx::experimental_custom_op_base ...@@ -55,7 +55,8 @@ struct half_copy_host final : migraphx::experimental_custom_op_base
hipMemcpyHostToHost, hipMemcpyHostToHost,
ctx.get_queue<hipStream_t>())); ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipMemset(output_buffer_ptr, 0, copy_bytes)); MIGRAPHX_HIP_ASSERT(
hipMemsetAsync(output_buffer_ptr, 0, copy_bytes, ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
return inputs[1]; return inputs[1];
} }
...@@ -97,7 +98,8 @@ struct half_copy_device final : migraphx::experimental_custom_op_base ...@@ -97,7 +98,8 @@ struct half_copy_device final : migraphx::experimental_custom_op_base
hipMemcpyDeviceToDevice, hipMemcpyDeviceToDevice,
ctx.get_queue<hipStream_t>())); ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
MIGRAPHX_HIP_ASSERT(hipMemset(output_buffer_ptr, 0, copy_bytes)); MIGRAPHX_HIP_ASSERT(
hipMemsetAsync(output_buffer_ptr, 0, copy_bytes, ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
return inputs[1]; return inputs[1];
} }
...@@ -124,7 +126,7 @@ struct half_copy_device_same_buffer final : migraphx::experimental_custom_op_bas ...@@ -124,7 +126,7 @@ struct half_copy_device_same_buffer final : migraphx::experimental_custom_op_bas
virtual bool runs_on_offload_target() const override { return true; } virtual bool runs_on_offload_target() const override { return true; }
virtual migraphx::argument virtual migraphx::argument
compute(migraphx::context, migraphx::shape, migraphx::arguments inputs) const override compute(migraphx::context ctx, migraphx::shape, migraphx::arguments inputs) const override
{ {
// This custom op simply sets first half size_bytes of the input 0, and rest of the half // This custom op simply sets first half size_bytes of the input 0, and rest of the half
// bytes are copied. for this custom_op, it does its computation on the "device". Therefore, // bytes are copied. for this custom_op, it does its computation on the "device". Therefore,
...@@ -133,7 +135,8 @@ struct half_copy_device_same_buffer final : migraphx::experimental_custom_op_bas ...@@ -133,7 +135,8 @@ struct half_copy_device_same_buffer final : migraphx::experimental_custom_op_bas
auto input_bytes = inputs[0].get_shape().bytes(); auto input_bytes = inputs[0].get_shape().bytes();
auto copy_bytes = input_bytes / 2; auto copy_bytes = input_bytes / 2;
MIGRAPHX_HIP_ASSERT(hipSetDevice(0)); MIGRAPHX_HIP_ASSERT(hipSetDevice(0));
MIGRAPHX_HIP_ASSERT(hipMemset(buffer_ptr, 0, copy_bytes)); MIGRAPHX_HIP_ASSERT(
hipMemsetAsync(buffer_ptr, 0, copy_bytes, ctx.get_queue<hipStream_t>()));
MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize()); MIGRAPHX_HIP_ASSERT(hipDeviceSynchronize());
return inputs[0]; return inputs[0];
} }
......
...@@ -272,6 +272,35 @@ TEST_CASE(contiguous_input) ...@@ -272,6 +272,35 @@ TEST_CASE(contiguous_input)
EXPECT(p1 == p2); EXPECT(p1 == p2);
} }
TEST_CASE(contiguous_boolean_input)
{
migraphx::shape s{migraphx::shape::bool_type, {2, 3}};
migraphx::shape s_lit{migraphx::shape::bool_type, {1}, {0}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s);
auto one = mm->add_literal(migraphx::literal(s_lit, {1.0}));
auto yb =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), one);
auto y = mm->add_instruction(migraphx::make_op("contiguous"), yb);
auto xor1 = mm->add_instruction(migraphx::make_op("logical_xor"), x, y);
mm->add_return({xor1});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s);
auto xor1 = add_pointwise(p2, "main:pointwise0", {x}, [=](auto* pm, const auto& inputs) {
auto y = pm->add_literal(migraphx::literal(s_lit, {1}));
return pm->add_instruction(migraphx::make_op("logical_xor"), inputs[0], y);
});
mm->add_return({xor1});
}
}
TEST_CASE(all_scalar_input) TEST_CASE(all_scalar_input)
{ {
migraphx::shape s{migraphx::shape::float_type}; migraphx::shape s{migraphx::shape::float_type};
......
...@@ -21,44 +21,30 @@ ...@@ -21,44 +21,30 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/gpu/elu.hpp>
#include <migraphx/gpu/context.hpp>
namespace migraphx { #include <test.hpp>
inline namespace MIGRAPHX_INLINE_NS { #include <migraphx/argument.hpp>
namespace gpu { #include <migraphx/gpu/hip.hpp>
#include <migraphx/gpu/target.hpp>
shape miopen_elu::compute_shape(const std::vector<shape>& inputs) const TEST_CASE(tuple_to_from_gpu)
{ {
check_shapes{inputs, *this}.has(2).not_broadcasted(); migraphx::shape s1{migraphx::shape::float_type, {2, 3}};
return inputs.at(1); migraphx::shape s2{migraphx::shape::int32_type, {2, 4}};
std::vector<float> p1_data = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6};
std::vector<int> p2_data = {1, 2, 3, 4, 5, 6, 7, 8};
auto p1 = migraphx::argument{s1, p1_data.data()};
auto p2 = migraphx::argument{s2, p2_data.data()};
auto p1_gpu = migraphx::gpu::to_gpu(p1);
auto p2_gpu = migraphx::gpu::to_gpu(p2);
auto p_tuple = migraphx::gpu::from_gpu(migraphx::argument({p1_gpu, p2_gpu}));
std::vector<migraphx::argument> results = p_tuple.get_sub_objects();
std::vector<float> result1;
results[0].visit([&](auto output) { result1.assign(output.begin(), output.end()); });
std::vector<int> result2;
results[1].visit([&](auto output) { result2.assign(output.begin(), output.end()); });
EXPECT(result1 == p1_data);
EXPECT(result2 == p2_data);
} }
argument miopen_elu::compute(context& ctx, int main(int argc, const char* argv[]) { test::run(argc, argv); }
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenActivationForward(ctx.get_stream().get_miopen(),
ad.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit());
return args[1];
}
void miopen_elu::finalize(context&, const shape&, const std::vector<shape>&)
{
ad = make_elu(op.alpha);
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -48,4 +48,4 @@ void gpu_literal_test() ...@@ -48,4 +48,4 @@ void gpu_literal_test()
} }
} }
int main() { gpu_literal_test(); } int main() { gpu_literal_test(); } // NOLINT (bugprone-exception-escape)
...@@ -84,7 +84,7 @@ migraphx::program create_program_from_mlir(const migraphx::module& mmlir) ...@@ -84,7 +84,7 @@ migraphx::program create_program_from_mlir(const migraphx::module& mmlir)
inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front())); inputs.push_back(mm->add_parameter("output", mmlir.get_output_shapes().front()));
migraphx::gpu::context ctx; migraphx::gpu::context ctx;
migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir), inputs); migraphx::gpu::insert_mlir(*mm, mm->end(), compile_mlir(ctx, mmlir, inputs), inputs);
return p; return p;
} }
...@@ -140,8 +140,8 @@ TEST_CASE(conv) ...@@ -140,8 +140,8 @@ TEST_CASE(conv)
{ {
const std::string mlir_output = R"__migraphx__( const std::string mlir_output = R"__migraphx__(
module { module {
func.func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} { func.func @main(%arg0: tensor<2x8x3x3xf32>, %arg1: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} {
%0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> %0 = migraphx.convolution(%arg1, %arg0) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
return %0 : tensor<1x2x2x2xf32> return %0 : tensor<1x2x2x2xf32>
} }
} }
...@@ -163,8 +163,8 @@ TEST_CASE(conv_add_relu) ...@@ -163,8 +163,8 @@ TEST_CASE(conv_add_relu)
{ {
const std::string mlir_output = R"__migraphx__( const std::string mlir_output = R"__migraphx__(
module { module {
func.func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {kernel = "mixr"} { func.func @main(%arg0: tensor<1x2x2x2xf32>, %arg1: tensor<2x8x3x3xf32>, %arg2: tensor<1x8x4x4xf32>) -> tensor<1x2x2x2xf32> attributes {arch = "", kernel = "mixr"} {
%0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1], use_dynamic_same_auto_pad = 0 : i64} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32> %0 = migraphx.convolution(%arg2, %arg1) {dilation = [1, 1], group = 1 : i64, padding = [0, 0, 0, 0], padding_mode = 0 : i64, stride = [1, 1]} : (tensor<1x8x4x4xf32>, tensor<2x8x3x3xf32>) -> tensor<1x2x2x2xf32>
%1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32> %1 = migraphx.add(%0, %arg0) : (tensor<1x2x2x2xf32>, tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
%2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32> %2 = migraphx.relu(%1) : (tensor<1x2x2x2xf32>) -> tensor<1x2x2x2xf32>
return %2 : tensor<1x2x2x2xf32> return %2 : tensor<1x2x2x2xf32>
......
...@@ -30,7 +30,6 @@ ...@@ -30,7 +30,6 @@
#include <migraphx/ref/target.hpp> #include <migraphx/ref/target.hpp>
#include <migraphx/gpu/target.hpp> #include <migraphx/gpu/target.hpp>
#include <migraphx/verify.hpp> #include <migraphx/verify.hpp>
#include <migraphx/quantization.hpp>
#include <migraphx/dead_code_elimination.hpp> #include <migraphx/dead_code_elimination.hpp>
#include <migraphx/propagate_constant.hpp> #include <migraphx/propagate_constant.hpp>
#include <migraphx/pass_manager.hpp> #include <migraphx/pass_manager.hpp>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include "test.hpp"
TEST_CASE(check_undefined)
{
migraphx::module m;
auto und = m.add_instruction(migraphx::make_op("undefined"));
auto cov = m.add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::half_type}}), und);
auto abs = m.add_instruction(migraphx::make_op("abs"), cov);
migraphx::shape xs{migraphx::shape::float_type, {2, 3}};
std::vector<float> datax = {1, 2, 3, 4, 5, 6};
auto lit = m.add_literal(migraphx::literal(xs, datax));
auto mul = m.add_instruction(migraphx::make_op("mul"), lit, lit);
EXPECT(und->is_undefined());
EXPECT(cov->is_undefined());
EXPECT(abs->is_undefined());
EXPECT(not lit->is_undefined());
EXPECT(not mul->is_undefined());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <basic_ops.hpp>
#include <migraphx/make_op.hpp>
#include <test.hpp>
void run_pass(migraphx::module& m)
{
migraphx::run_passes(m, {migraphx::layout_nhwc{}, migraphx::dead_code_elimination{}});
}
migraphx::operation layout(std::vector<int64_t> permutation = {0, 1, 2, 3})
{
return migraphx::make_op("layout", {{"permutation", permutation}});
}
migraphx::instruction_ref add_layout_nhwc(migraphx::module& m, migraphx::instruction_ref ins)
{
return m.add_instruction(layout({0, 2, 3, 1}), ins);
}
TEST_CASE(conv_relu)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {1, 8, 16, 16}});
auto w = m1.add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {16, 8, 3, 3}}));
auto conv = m1.add_instruction(
migraphx::make_op("convolution",
{{"padding", {1, 1}}, {"stride", {2, 2}}, {"dilation", {1, 1}}}),
x,
w);
m1.add_instruction(migraphx::make_op("relu"), conv);
}
run_pass(m1);
migraphx::module m2;
{
auto x = add_layout_nhwc(
m2, m2.add_parameter("x", {migraphx::shape::float_type, {1, 8, 16, 16}}));
auto w = add_layout_nhwc(m2,
m2.add_literal(migraphx::generate_literal(
{migraphx::shape::float_type, {16, 8, 3, 3}})));
auto conv = m2.add_instruction(
migraphx::make_op("convolution",
{{"padding", {1, 1}}, {"stride", {2, 2}}, {"dilation", {1, 1}}}),
x,
w);
auto conv_layout = m2.add_instruction(layout(), conv);
m2.add_instruction(migraphx::make_op("relu"), conv_layout);
}
EXPECT(m1.sort() == m2.sort());
}
TEST_CASE(conv_add)
{
migraphx::module m1;
{
auto x = m1.add_parameter("x", {migraphx::shape::float_type, {1, 8, 16, 16}});
auto w = m1.add_literal(
migraphx::generate_literal({migraphx::shape::float_type, {16, 8, 3, 3}}));
auto y = m1.add_literal(migraphx::generate_literal({migraphx::shape::float_type, {16}}));
auto conv = m1.add_instruction(
migraphx::make_op("convolution",
{{"padding", {1, 1}}, {"stride", {2, 2}}, {"dilation", {1, 1}}}),
x,
w);
auto b = m1.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", conv->get_shape().lens()}}),
y);
m1.add_instruction(migraphx::make_op("add"), conv, b);
}
run_pass(m1);
migraphx::module m2;
{
auto x = add_layout_nhwc(
m2, m2.add_parameter("x", {migraphx::shape::float_type, {1, 8, 16, 16}}));
auto w = add_layout_nhwc(m2,
m2.add_literal(migraphx::generate_literal(
{migraphx::shape::float_type, {16, 8, 3, 3}})));
auto y = m2.add_literal(migraphx::generate_literal({migraphx::shape::float_type, {16}}));
auto conv = m2.add_instruction(
migraphx::make_op("convolution",
{{"padding", {1, 1}}, {"stride", {2, 2}}, {"dilation", {1, 1}}}),
x,
w);
auto conv_layout = m2.add_instruction(layout(), conv);
auto b = m2.add_instruction(
migraphx::make_op("broadcast", {{"axis", 1}, {"out_lens", conv->get_shape().lens()}}),
y);
m2.add_instruction(migraphx::make_op("add"), conv_layout, b);
}
EXPECT(m1.sort() == m2.sort());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
...@@ -49,6 +49,25 @@ TEST_CASE(literal_test) ...@@ -49,6 +49,25 @@ TEST_CASE(literal_test)
EXPECT(l4.empty()); EXPECT(l4.empty());
} }
TEST_CASE(literal_nstd_shape_vector)
{
migraphx::shape nstd_shape{migraphx::shape::float_type, {1, 3, 2, 2}, {12, 1, 6, 3}};
std::vector<float> data(12);
std::iota(data.begin(), data.end(), 0);
auto l0 = migraphx::literal{nstd_shape, data};
// check data buffer is read in correctly
std::vector<float> expected_buffer = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
const auto* start = reinterpret_cast<const float*>(l0.data());
std::vector<float> l0_data{start, start + 12};
EXPECT(l0_data == expected_buffer);
// check that using visit() (that uses a tensor view) gives data in correct order
std::vector<float> results_vector(12);
l0.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(results_vector == data);
}
TEST_CASE(literal_os1) TEST_CASE(literal_os1)
{ {
migraphx::literal l{1}; migraphx::literal l{1};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment