Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
dae94657
Unverified
Commit
dae94657
authored
Dec 14, 2022
by
Chris Austen
Committed by
GitHub
Dec 14, 2022
Browse files
Merge branch 'develop' into jit-reduce-reg
parents
b013d991
56c43445
Changes
201
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
344 additions
and
378 deletions
+344
-378
test/verify/quant_conv_1d.cpp
test/verify/quant_conv_1d.cpp
+6
-5
test/verify/quant_conv_default_mode.cpp
test/verify/quant_conv_default_mode.cpp
+1
-4
test/verify/quant_conv_int8x4_default.cpp
test/verify/quant_conv_int8x4_default.cpp
+1
-4
test/verify/test_batchnorm_2d_per_actv.cpp
test/verify/test_batchnorm_2d_per_actv.cpp
+0
-67
test/verify/test_batchnorm_3d.cpp
test/verify/test_batchnorm_3d.cpp
+0
-54
test/verify/test_batchnorm_3d_per_actv.cpp
test/verify/test_batchnorm_3d_per_actv.cpp
+0
-68
test/verify/test_batchnorm_inference.cpp
test/verify/test_batchnorm_inference.cpp
+0
-53
test/verify/test_batchnorm_inference_2.cpp
test/verify/test_batchnorm_inference_2.cpp
+0
-53
test/verify/test_concat_broadcast_add.cpp
test/verify/test_concat_broadcast_add.cpp
+12
-15
test/verify/test_conv_bn.cpp
test/verify/test_conv_bn.cpp
+25
-4
test/verify/test_conv_bn_add.cpp
test/verify/test_conv_bn_add.cpp
+30
-13
test/verify/test_conv_bn_relu_pooling.cpp
test/verify/test_conv_bn_relu_pooling.cpp
+22
-2
test/verify/test_conv_bn_relu_pooling2.cpp
test/verify/test_conv_bn_relu_pooling2.cpp
+31
-13
test/verify/test_pad_large.cpp
test/verify/test_pad_large.cpp
+5
-3
test/verify/test_reduce_op_large.cpp
test/verify/test_reduce_op_large.cpp
+14
-1
test/verify/test_shape_alloc.cpp
test/verify/test_shape_alloc.cpp
+61
-0
test/verify/test_slice_concat_add.cpp
test/verify/test_slice_concat_add.cpp
+10
-3
tools/accuracy/requirements.txt
tools/accuracy/requirements.txt
+1
-1
tools/convert_onnx_version.py
tools/convert_onnx_version.py
+88
-0
tools/include/operation.hpp
tools/include/operation.hpp
+37
-15
No files found.
test/verify/quant_conv_
valid_mode
.cpp
→
test/verify/quant_conv_
1d
.cpp
View file @
dae94657
...
...
@@ -25,20 +25,21 @@
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/
op/quant_convolution
.hpp>
#include <migraphx/
make_op
.hpp>
struct
quant_conv_
valid_mode
:
verify_program
<
quant_conv_
valid_mode
>
struct
quant_conv_
1d
:
verify_program
<
quant_conv_
1d
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
4
,
4
}};
migraphx
::
shape
a_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
4
}};
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
,
3
}};
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
valid
},
migraphx
::
make_op
(
"quant_convolution"
,
{{
"padding"
,
{
0
}},
{
"stride"
,
{
1
}},
{
"dilation"
,
{
1
}}}),
pa
,
pc
);
return
p
;
...
...
test/verify/quant_conv_default_mode.cpp
View file @
dae94657
...
...
@@ -37,10 +37,7 @@ struct quant_conv_default_mode : verify_program<quant_conv_default_mode>
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
2
,
3
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
same
},
pa
,
pc
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}}},
pa
,
pc
);
return
p
;
}
};
test/verify/quant_conv_int8x4_default.cpp
View file @
dae94657
...
...
@@ -37,10 +37,7 @@ struct quant_conv_int8x4_default : verify_program<quant_conv_int8x4_default>
auto
pa
=
mm
->
add_parameter
(
"a"
,
a_shape
);
migraphx
::
shape
c_shape
{
migraphx
::
shape
::
int8_type
,
{
16
,
16
,
3
,
3
}};
auto
pc
=
mm
->
add_parameter
(
"c"
,
c_shape
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}},
migraphx
::
op
::
same
},
pa
,
pc
);
mm
->
add_instruction
(
migraphx
::
op
::
quant_convolution
{{{
0
,
0
}},
{{
1
,
1
}},
{{
1
,
1
}}},
pa
,
pc
);
return
p
;
}
};
test/verify/test_batchnorm_2d_per_actv.cpp
deleted
100644 → 0
View file @
b013d991
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_2d_per_actv
:
verify_program
<
test_batchnorm_2d_per_actv
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
4
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
,
d2
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-6
},
{
"momentum"
,
0.9
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_3d.cpp
deleted
100644 → 0
View file @
b013d991
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_3d
:
verify_program
<
test_batchnorm_3d
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
2
;
const
size_t
d3
=
2
;
const
size_t
channels
=
2
;
const
size_t
batches
=
2
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
,
d3
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_3d_per_actv.cpp
deleted
100644 → 0
View file @
b013d991
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_3d_per_actv
:
verify_program
<
test_batchnorm_3d_per_actv
>
{
const
size_t
d1
=
2
;
const
size_t
d2
=
4
;
const
size_t
d3
=
5
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
,
d2
,
d3
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
,
d2
,
d3
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-6
},
{
"momentum"
,
0.8
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference.cpp
deleted
100644 → 0
View file @
b013d991
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference
:
verify_program
<
test_batchnorm_inference
>
{
const
size_t
width
=
3
;
const
size_t
height
=
3
;
const
size_t
channels
=
3
;
const
size_t
batches
=
4
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_batchnorm_inference_2.cpp
deleted
100644 → 0
View file @
b013d991
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_batchnorm_inference_2
:
verify_program
<
test_batchnorm_inference_2
>
{
const
size_t
width
=
14
;
const
size_t
height
=
14
;
const
size_t
channels
=
256
;
const
size_t
batches
=
1
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
return
p
;
}
};
test/verify/test_
batchnorm_1
d.cpp
→
test/verify/test_
concat_broadcast_ad
d.cpp
View file @
dae94657
...
...
@@ -27,26 +27,23 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_
batchnorm_1
d
:
verify_program
<
test_
batchnorm_1
d
>
struct
test_
concat_broadcast_ad
d
:
verify_program
<
test_
concat_broadcast_ad
d
>
{
const
size_t
size
=
3
;
const
size_t
channels
=
3
;
const
size_t
batches
=
4
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
size
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
1
,
2
,
4
}};
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
1
,
6
,
4
}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
float_type
,
{
6
,
1
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s0
);
auto
y
=
mm
->
add_parameter
(
"y"
,
s0
);
auto
z
=
mm
->
add_parameter
(
"z"
,
s0
);
auto
concat
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
1
}}),
x
,
y
,
z
);
auto
b
=
mm
->
add_literal
(
migraphx
::
generate_literal
(
s2
,
15
));
auto
bb
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
s1
.
lens
()}}),
b
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
concat
,
bb
);
return
p
;
}
};
test/verify/test_conv_bn.cpp
View file @
dae94657
...
...
@@ -26,6 +26,8 @@
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn
:
verify_program
<
test_conv_bn
>
{
...
...
@@ -37,19 +39,38 @@ struct test_conv_bn : verify_program<test_conv_bn>
migraphx
::
shape
xs
{
migraphx
::
shape
::
float_type
,
{
1
,
3
,
224
,
224
}};
migraphx
::
shape
ws
{
migraphx
::
shape
::
float_type
,
{
64
,
3
,
7
,
7
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
64
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
auto
x
=
mm
->
add_parameter
(
"x"
,
xs
);
auto
w
=
mm
->
add_parameter
(
"w"
,
ws
);
// non-symmetrical tiling
auto
conv
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
,
{{
"padding"
,
{
3
,
3
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x
,
w
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
return
p
;
}
};
test/verify/test_conv_bn_add.cpp
View file @
dae94657
...
...
@@ -26,21 +26,38 @@
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_add
:
verify_program
<
test_conv_bn_add
>
{
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
,
std
::
size_t
seed
=
1
)
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
{
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
seed
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
seed
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
seed
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
seed
)));
return
m
.
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
bn_lens
=
x
->
get_shape
().
lens
();
auto
c_len
=
bn_lens
.
at
(
1
);
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
migraphx
::
program
create_program
()
const
...
...
@@ -57,10 +74,10 @@ struct test_conv_bn_add : verify_program<test_conv_bn_add>
{
migraphx
::
shape
::
float_type
,
{
ochannels
,
ichannels
,
1
,
1
}},
2
));
auto
relu1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
x
);
auto
conv1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu1
,
w
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
,
ochannels
,
1
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
relu2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
y
);
auto
conv2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"convolution"
),
relu2
,
v
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
,
ochannels
,
1
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
sum
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
sum
);
return
p
;
...
...
test/verify/test_conv_bn_relu_pooling.cpp
View file @
dae94657
...
...
@@ -27,6 +27,8 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling
:
verify_program
<
test_conv_bn_relu_pooling
>
{
...
...
@@ -49,8 +51,26 @@ struct test_conv_bn_relu_pooling : verify_program<test_conv_bn_relu_pooling>
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
auto
bn
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
conv
,
scale
,
bias
,
mean
,
variance
);
auto
rt
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
mm
->
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"sub"
),
{
conv
,
usq_mean
});
auto
var_eps
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
auto
bn
=
add_common_op
(
*
mm
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
bn
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
{{
"mode"
,
migraphx
::
op
::
pooling_mode
::
average
},
...
...
test/verify/test_conv_bn_relu_pooling2.cpp
View file @
dae94657
...
...
@@ -27,22 +27,40 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/common.hpp>
struct
test_conv_bn_relu_pooling2
:
verify_program
<
test_conv_bn_relu_pooling2
>
{
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
program
&
p
,
migraphx
::
instruction_ref
x
,
std
::
size_t
channels
)
static
migraphx
::
instruction_ref
add_bn
(
migraphx
::
module
&
m
,
migraphx
::
instruction_ref
x
)
{
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
}};
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
channels
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
channels
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
channels
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
channels
)));
return
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
),
x
,
scale
,
bias
,
mean
,
variance
);
auto
bn_lens
=
x
->
get_shape
().
lens
();
auto
c_len
=
bn_lens
.
at
(
1
);
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
c_len
}};
auto
scale
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
+
c_len
)));
auto
bias
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
+
c_len
)));
auto
mean
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
+
c_len
)));
auto
variance
=
m
.
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
+
c_len
)));
auto
rt
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
0.5
}});
auto
eps
=
m
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
::
float_type
,
{
1e-5
f
}});
auto
usq_scale
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
scale
);
auto
usq_bias
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
bias
);
auto
usq_mean
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
mean
);
auto
usq_var
=
m
.
add_instruction
(
migraphx
::
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
,
2
}}}),
variance
);
auto
numer
=
add_common_op
(
m
,
migraphx
::
make_op
(
"sub"
),
{
x
,
usq_mean
});
auto
var_eps
=
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
usq_var
,
eps
});
auto
denom
=
add_common_op
(
m
,
migraphx
::
make_op
(
"pow"
),
{
var_eps
,
rt
});
auto
div0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"div"
),
{
numer
,
denom
});
auto
r0
=
add_common_op
(
m
,
migraphx
::
make_op
(
"mul"
),
{
div0
,
usq_scale
});
return
add_common_op
(
m
,
migraphx
::
make_op
(
"add"
),
{
r0
,
usq_bias
});
}
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
...
...
@@ -59,7 +77,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
1
,
1
}},
{
"dilation"
,
{
1
,
1
}}}),
x1
,
w1
);
auto
bn1
=
add_bn
(
p
,
conv1
,
2048
);
auto
bn1
=
add_bn
(
*
mm
,
conv1
);
auto
x2
=
mm
->
add_parameter
(
"x2"
,
xs2
);
auto
w2
=
mm
->
add_parameter
(
"w2"
,
ws2
);
auto
conv2
=
mm
->
add_instruction
(
...
...
@@ -67,7 +85,7 @@ struct test_conv_bn_relu_pooling2 : verify_program<test_conv_bn_relu_pooling2>
{{
"padding"
,
{
0
,
0
}},
{
"stride"
,
{
2
,
2
}},
{
"dilation"
,
{
1
,
1
}}}),
x2
,
w2
);
auto
bn2
=
add_bn
(
p
,
conv2
,
2048
);
auto
bn2
=
add_bn
(
*
mm
,
conv2
);
auto
add
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
bn1
,
bn2
);
auto
relu
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"relu"
),
add
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pooling"
,
...
...
test/verify/test_
leaky_relu
.cpp
→
test/verify/test_
pad_large
.cpp
View file @
dae94657
...
...
@@ -27,14 +27,16 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_
leaky_relu
:
verify_program
<
test_
leaky_relu
>
struct
test_
pad_large
:
verify_program
<
test_
pad_large
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
4
,
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"leaky_relu"
,
{{
"alpha"
,
0.01
}}),
x
);
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
586
,
3
,
224
,
224
}};
std
::
vector
<
int64_t
>
pads0
=
{
0
,
0
,
1
,
1
,
0
,
0
,
1
,
1
};
auto
l0
=
mm
->
add_parameter
(
"x"
,
s0
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"pad"
,
{{
"pads"
,
pads0
}}),
l0
);
return
p
;
}
};
test/verify/test_reduce_op_large.cpp
View file @
dae94657
...
...
@@ -51,7 +51,7 @@ template struct test_reduce_op_large<migraphx::op::reduce_min, 1, migraphx::shap
template
struct
test_reduce_op_large
<
migraphx
::
op
::
reduce_prod
,
2
,
migraphx
::
shape
::
float_type
>;
template
struct
test_reduce_op_large
<
migraphx
::
op
::
reduce_sum
,
1
,
migraphx
::
shape
::
float_type
>;
struct
test_reduce_mean
:
verify_program
<
test_reduce_mean
>
struct
test_reduce_mean
_1
:
verify_program
<
test_reduce_mean
_1
>
{
migraphx
::
program
create_program
()
const
{
...
...
@@ -63,3 +63,16 @@ struct test_reduce_mean : verify_program<test_reduce_mean>
return
p
;
};
};
struct
test_reduce_mean_2
:
verify_program
<
test_reduce_mean_2
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
336
,
400
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
mm
->
add_instruction
(
migraphx
::
op
::
reduce_mean
{{
1
}},
x
);
return
p
;
};
};
test/verify/test_
batchnorm_1d_
pe
r
_a
ctv
.cpp
→
test/verify/test_
sha
pe_a
lloc
.cpp
View file @
dae94657
...
...
@@ -21,46 +21,41 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
struct
test_batchnorm_1d_per_actv
:
verify_program
<
test_batchnorm_1d_per_actv
>
/**
* @brief test_shape_alloc sets up a situation that could lead to an exception "convolution: Shapes
* are not in standard layout" if a "replace_allocate" compiler pass is not followed with
* "adjust_allocation". The last transpose instruction generates a shape with a stride of 1 in
* the 2nd index, a non-standard layout that should be reallocated by adjust_allocation.
*/
struct
test_shape_alloc
:
verify_program
<
test_shape_alloc
>
{
const
size_t
d1
=
5
;
const
size_t
channels
=
2
;
const
size_t
batches
=
3
;
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batches
,
channels
,
d1
}};
migraphx
::
shape
vars
{
migraphx
::
shape
::
float_type
,
{
channels
,
d1
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
scale
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
1
)));
auto
bias
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
2
)));
auto
mean
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
3
)));
auto
variance
=
mm
->
add_literal
(
migraphx
::
abs
(
migraphx
::
generate_literal
(
vars
,
4
)));
mm
->
add_instruction
(
migraphx
::
make_op
(
"batch_norm_inference"
,
{{
"epsilon"
,
1.0e-5
},
{
"momentum"
,
0.96
f
},
{
"bn_mode"
,
migraphx
::
to_value
(
migraphx
::
op
::
batch_norm_inference
::
per_activation
)}}),
x
,
scale
,
bias
,
mean
,
variance
);
auto
weights
=
mm
->
add_literal
(
migraphx
::
generate_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
11
,
8
,
1
,
1
},
{
8
,
1
,
1
,
1
}}));
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
,
8
,
7
,
7
}});
auto
transpose1
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
0
,
2
,
3
,
1
}}}),
x
);
// -> float_type, {1, 7, 7, 8}, {392, 7, 1, 49}
auto
reduce_ins
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_mean"
,
{{
"axes"
,
{
1
,
2
}}}),
transpose1
);
// -> float_type, {1, 1, 1, 8}, {8, 8, 8, 1}
auto
transpose2
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"transpose"
,
{{
"permutation"
,
{
0
,
3
,
1
,
2
}}}),
reduce_ins
);
// -> float_type, {1, 8, 1, 1}, {8, 1, 8, 8}
auto
conv_op
=
migraphx
::
make_op
(
"convolution"
);
mm
->
add_instruction
(
conv_op
,
transpose2
,
weights
);
return
p
;
}
};
test/verify/test_
elu
.cpp
→
test/verify/test_
slice_concat_add
.cpp
View file @
dae94657
...
...
@@ -27,14 +27,21 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
test_
elu
:
verify_program
<
test_
elu
>
struct
test_
slice_concat_add
:
verify_program
<
test_
slice_concat_add
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
4
,
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"leaky_relu"
,
{{
"alpha"
,
1.0
}}),
x
);
migraphx
::
shape
s0
{
migraphx
::
shape
::
float_type
,
{
1
,
24
,
2
,
2
}};
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
1
,
8
,
2
,
2
}};
auto
x
=
mm
->
add_parameter
(
"x"
,
s0
);
auto
y
=
mm
->
add_parameter
(
"y"
,
s1
);
auto
z
=
mm
->
add_parameter
(
"z"
,
s0
);
auto
slice
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"slice"
,
{{
"axes"
,
{
1
}},
{
"starts"
,
{
0
}},
{
"ends"
,
{
8
}}}),
x
);
auto
concat
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
1
}}),
slice
,
y
,
y
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"add"
),
concat
,
z
);
return
p
;
}
};
tools/accuracy/requirements.txt
View file @
dae94657
...
...
@@ -21,5 +21,5 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
numpy==1.
18.5
numpy==1.
21.6
onnxruntime==1.10.0
tools/convert_onnx_version.py
0 → 100644
View file @
dae94657
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
import
argparse
import
onnx
from
onnx
import
version_converter
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'MIGraphX Onnx Model Convertion. Use to convert the opset of the input model to MIGraphX
\'
s'
)
req_args
=
parser
.
add_argument_group
(
title
=
'required arguments'
)
req_args
.
add_argument
(
'--model'
,
type
=
str
,
required
=
True
,
help
=
'path to onnx file'
)
req_args
.
add_argument
(
'--output'
,
type
=
str
,
required
=
True
,
help
=
'path to output onnx file'
)
req_args
.
add_argument
(
'--opset'
,
type
=
int
,
required
=
True
,
help
=
'The output opset'
)
req_args
.
add_argument
(
'--infer_shapes'
,
action
=
'store_true'
,
help
=
'Infer shapes for output model'
)
parser
.
add_argument
(
'--verbose'
,
action
=
'store_true'
,
help
=
'show verbose information (for debugging)'
)
args
=
parser
.
parse_args
()
return
args
def
main
():
args
=
parse_args
()
model_path
=
args
.
model
out_model_path
=
args
.
output
target_opset
=
args
.
opset
verbose
=
args
.
verbose
infer_shapes
=
args
.
infer_shapes
original_model
=
onnx
.
load
(
model_path
)
if
verbose
:
print
(
f
"The model before conversion:
\n
{
original_model
}
"
)
# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model
=
version_converter
.
convert_version
(
original_model
,
target_opset
)
if
infer_shapes
:
converted_model
=
onnx
.
shape_inference
.
infer_shapes
(
converted_model
)
if
verbose
:
print
(
f
"The model after conversion:
\n
{
converted_model
}
"
)
# Save the ONNX model
onnx
.
save
(
converted_model
,
out_model_path
)
if
__name__
==
'__main__'
:
main
()
tools/include/operation.hpp
View file @
dae94657
...
...
@@ -32,6 +32,8 @@
#include <utility>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/argument.hpp>
...
...
@@ -199,9 +201,12 @@ auto compute_op(rank<1>,
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
))
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
);
}
template
<
class
T
>
...
...
@@ -220,9 +225,9 @@ compute_op(const T& x, context& ctx, const shape& output_shape, const std::vecto
template
<
class
T
>
auto
compute_op
(
rank
<
1
>
,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
))
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
))
{
return
x
.
compute
(
output_shape
,
input
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
);
}
template
<
class
T
>
...
...
@@ -244,9 +249,11 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -278,9 +285,17 @@ auto compute_op(rank<4>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -290,9 +305,11 @@ auto compute_op(rank<3>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -302,9 +319,10 @@ auto compute_op(rank<2>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
output
,
inputs
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -314,9 +332,12 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -348,7 +369,8 @@ auto is_context_free_op(rank<1>,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
),
std
::
true_type
{});
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
),
std
::
true_type
{});
template
<
class
T
>
auto
is_context_free_op
(
rank
<
0
>
,
const
T
&
,
const
shape
&
,
const
std
::
vector
<
argument
>&
)
...
...
Prev
1
…
6
7
8
9
10
11
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment