Commit cd4ab535 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 3891ee58 a0fa3742
......@@ -29,6 +29,7 @@
#include <migraphx/literal.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/dyn_output.hpp>
#include <utility>
namespace migraphx {
......@@ -112,7 +113,7 @@ struct hip_copy_to_gpu
std::string name() const { return "hip::copy_to_gpu"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1, 2).same_type();
check_shapes{inputs, *this, true}.has(1, 2).same_type();
return inputs.at(0);
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
......@@ -121,6 +122,10 @@ struct hip_copy_to_gpu
if(args.size() == 1)
return input;
argument result = args[1].share();
if(result.get_shape().dynamic())
{
result = result.reshape(args[0].get_shape());
}
gpu_copy(ctx, input, result);
// Associate the input since it was registered with hip
return {result.get_shape(), [input, result]() mutable { return result.data(); }};
......@@ -138,19 +143,24 @@ struct hip_copy_from_gpu
std::string name() const { return "hip::copy_from_gpu"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1, 2).same_type();
check_shapes{inputs, *this, true}.has(1, 2).same_type();
return inputs.at(0);
}
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
compute(context& ctx, const dyn_output& dyn_out, const std::vector<argument>& args) const
{
if(args.size() == 1)
{
argument result = allocate_gpu(output_shape, true);
argument result = allocate_gpu(dyn_out.computed_shape, true);
gpu_copy(ctx, args[0], result);
return result;
}
copy_from_gpu(ctx, args[0], args[1]);
argument input = args[0].share();
if(input.get_shape().dynamic())
{
input = input.reshape(args[1].get_shape());
}
copy_from_gpu(ctx, input, args[1]);
return args[1];
}
std::ptrdiff_t output_alias(const std::vector<shape>& args) const
......
......@@ -31,7 +31,6 @@
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/type_name.hpp>
#include <utility>
#include <iostream>
......
......@@ -33,7 +33,6 @@
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/type_name.hpp>
#include <utility>
#include <iostream>
......
......@@ -31,7 +31,6 @@
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/type_name.hpp>
#include <utility>
#include <iostream>
......
......@@ -31,12 +31,10 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace driver {
std::pair<double, double>
time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n = 100);
} // namespace driver
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <fstream>
#include <migraphx/filesystem.hpp>
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/env.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/module.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include "ck/host/device_gemm_multiple_d.hpp"
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_LOG_CK_GEMM);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_TUNING_VALUE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_CK_DEBUG);
// NOLINTNEXTLINE
static const char* const ck_gemm_kernel = R"__migraphx__(
#include <args.hpp>
#include <migraphx/kernels/ck_gemm.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <${include}>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last())(${args})([](auto... xs) {
ck_gemm<${solution}, ${blocks_per_batch}>(xs...);
});
}
}
} // namespace migraphx
)__migraphx__";
// NOLINTNEXTLINE
static const char* const disable_warning_pragma = R"__migraphx__(
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Weverything"
${content}
#pragma clang diagnostic pop
)__migraphx__";
template <class P>
static std::string ck_disable_warnings(P p)
{
return interpolate_string(disable_warning_pragma,
{{"content", std::string{p.first, p.second}}});
}
static std::unordered_map<std::string, std::string> create_ck_header_strings()
{
std::unordered_map<std::string, std::string> result;
auto ck_headers = ck::host::GetHeaders();
std::transform(
ck_headers.begin(), ck_headers.end(), std::inserter(result, result.begin()), [&](auto&& p) {
return std::make_pair(p.first, ck_disable_warnings(p.second));
});
return result;
}
static std::vector<src_file> create_ck_headers()
{
static const auto& header_strings = create_ck_header_strings();
std::vector<src_file> srcs;
std::transform(
header_strings.begin(), header_strings.end(), std::back_inserter(srcs), [&](auto&& p) {
return src_file{fs::path{p.first},
{p.second.data(), p.second.data() + p.second.size()}};
});
return srcs;
}
static const std::vector<src_file>& ck_headers()
{
static const auto& headers = create_ck_headers();
return headers;
}
static bool transposed_matrix(const shape& s) { return s.strides().back() != 1; }
using tuning_entry = std::pair<std::vector<shape>, size_t>;
static std::vector<tuning_entry> read_tuning(const std::string& s)
{
if(not fs::exists(s))
return {};
return from_value<std::vector<tuning_entry>>(from_json_string(read_string(s)));
}
static float matrix_distance(const shape& x, const shape& y)
{
if(x.type() != y.type())
return std::numeric_limits<float>::max();
if(transposed_matrix(x) != transposed_matrix(y))
return std::numeric_limits<float>::max();
auto sum_squared = std::inner_product(x.lens().rbegin(),
x.lens().rbegin() + 2,
y.lens().rbegin(),
0,
std::plus<>{},
[](auto a, auto b) { return (a - b) * (a - b); });
return std::sqrt(sum_squared);
}
static std::size_t get_tuning_for(const std::vector<shape>& inputs)
{
static auto tuning = read_tuning(string_value_of(MIGRAPHX_CK_TUNING{}, ""));
if(tuning.empty())
{
std::cout << "*********** Warning: No CK tuning! for config:" << std::endl;
std::cout << " " << inputs[0] << std::endl;
std::cout << " " << inputs[1] << std::endl;
std::cout << " " << inputs[2] << std::endl;
}
auto it = std::find_if(
tuning.begin(), tuning.end(), [&](const auto& p) { return p.first == inputs; });
if(it == tuning.end())
{
std::cout << "*********** Warning: CK tuning missing for config!" << std::endl;
std::cout << " " << inputs[0] << std::endl;
std::cout << " " << inputs[1] << std::endl;
std::cout << " " << inputs[2] << std::endl;
std::vector<std::pair<float, std::size_t>> w;
std::transform(tuning.begin(), tuning.end(), std::back_inserter(w), [&](const auto& p) {
if(inputs.size() < 3 or p.first.size() < 3)
MIGRAPHX_THROW("Invalid CK config");
auto avg_distance = std::inner_product(
p.first.begin(),
p.first.begin() + 3,
inputs.begin(),
0.0f,
std::plus<>{},
[](const auto& x, const auto& y) { return matrix_distance(x, y) / 3.0f; });
return std::make_pair(avg_distance, p.second);
});
std::sort(w.begin(), w.end());
std::size_t default_value = 4;
if(not w.empty())
default_value = w.front().second;
auto tuning_val = value_of(MIGRAPHX_CK_TUNING_VALUE{}, default_value);
std::cout << "*********** Warning: CK try tuning: " << tuning_val << std::endl;
return tuning_val;
}
return it->second;
}
struct ck_gemm_compiler : compiler<ck_gemm_compiler>
{
static std::string get_layout(const shape& s)
{
return transposed_matrix(s) ? "ck::tensor_layout::gemm::ColumnMajor"
: "ck::tensor_layout::gemm::RowMajor";
}
static ck::host::DataType get_type(const shape& s)
{
if(s.type() == shape::half_type)
return ck::host::DataType::Half;
else if(s.type() == shape::float_type)
return ck::host::DataType::Float;
else if(s.type() == shape::int8_type)
return ck::host::DataType::Int8;
else if(s.type() == shape::int32_type)
return ck::host::DataType::Int32;
MIGRAPHX_THROW("Unsupported ck type");
}
template <class Iterator, class F>
static std::string ck_tuple(Iterator start, Iterator last, F f)
{
std::vector<std::string> s;
std::transform(start, last, std::back_inserter(s), f);
return "ck::Tuple<" + join_strings(s, ",") + ">";
}
static std::vector<shape> adjust_inputs(std::vector<shape> inputs, bool& swap_inputs)
{
swap_inputs = false;
auto c_shape = inputs.back();
if(not transposed_matrix(c_shape))
return inputs;
std::vector<int64_t> perm(c_shape.lens().size());
std::iota(perm.begin(), perm.end(), 0);
std::swap(perm[perm.size() - 1], perm[perm.size() - 2]);
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](shape s) {
return reorder_shape(s, perm);
});
swap_inputs = true;
return inputs;
}
static std::size_t get_batch_count(const shape& s)
{
return std::accumulate(
s.lens().rbegin() + 2, s.lens().rend(), std::size_t{1}, std::multiplies<std::size_t>());
}
static void fold_batch_dims(shape& s)
{
auto lens = s.lens();
if(lens.size() <= 2)
return;
auto batch_count = get_batch_count(s);
auto m1 = lens.at(lens.size() - 2);
auto m2 = lens.at(lens.size() - 1);
if(transposed_matrix(s))
s = shape{s.type(), {m1, m2 * batch_count}};
else
s = shape{s.type(), {m1 * batch_count, m2}};
}
static void remove_batch_dims(shape& s)
{
auto lens = s.lens();
if(lens.size() <= 2)
return;
auto m1 = lens.at(lens.size() - 2);
auto m2 = lens.at(lens.size() - 1);
s = shape{s.type(), {m1, m2}};
}
std::vector<std::string> names() const { return {"gpu::ck_gemm"}; }
static bool standard_batch(const shape& s)
{
if(s.lens().size() < 3)
return true;
std::vector<std::size_t> lens(s.lens().begin(), s.lens().end() - 2);
std::vector<std::size_t> strides(s.strides().begin(), s.strides().end() - 2);
auto base = *(s.lens().end() - 2) * *(s.lens().end() - 1);
std::transform(strides.begin(), strides.end(), strides.begin(), [&](auto stride) {
return stride / base;
});
return shape{s.type(), lens, strides}.standard();
}
bool can_fold_batch(const std::vector<shape>& inputs) const
{
const auto& b_shape = inputs[1];
if(std::any_of(inputs.begin() + 2, inputs.end() - 1, [](auto input) {
return not standard_batch(input);
}))
return false;
const auto& b_strides = b_shape.strides();
return std::all_of(
b_strides.begin(), b_strides.end() - 2, [](auto stride) { return stride == 0; });
}
ck::host::device_gemm_multiple_d::Problem create_problem(const std::vector<shape>& inputs,
const value& v) const
{
const auto& a_shape = inputs[0];
const auto& b_shape = inputs[1];
const auto& c_shape = inputs.back();
auto rank = a_shape.lens().size();
auto batch_count = get_batch_count(c_shape);
auto m = c_shape.lens()[rank - 2];
m = can_fold_batch(inputs) ? m * batch_count : m;
auto n = c_shape.lens().back();
auto k = a_shape.lens().back();
const bool trans_a = transposed_matrix(a_shape);
const bool trans_b = transposed_matrix(b_shape);
const bool trans_e = transposed_matrix(c_shape);
const auto a_type = get_type(a_shape);
const auto b_type = get_type(b_shape);
const auto e_type = get_type(c_shape);
std::vector<bool> ds_layout;
std::transform(inputs.begin() + 2,
inputs.end() - 1,
std::back_inserter(ds_layout),
[](const auto& i) { return transposed_matrix(i); });
std::vector<ck::host::DataType> ds_type;
std::transform(inputs.begin() + 2,
inputs.end() - 1,
std::back_inserter(ds_type),
[](const auto& i) { return get_type(i); });
std::string ck_passthrough = "ck_passthrough";
std::string cde_op = ck_passthrough;
assert(inputs.size() < 4 or v.contains("post"));
if(v.contains("post"))
{
cde_op = v.at("post").to<std::string>();
}
return ck::host::device_gemm_multiple_d::Problem{m,
n,
k,
trans_a,
trans_b,
trans_e,
ds_layout,
a_type,
b_type,
e_type,
ds_type,
ck_passthrough,
ck_passthrough,
cde_op};
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
const auto& a_shape = inputs[0];
const auto& b_shape = inputs[1];
const auto& c_shape = inputs.back();
auto tuning_value = v.get("tuning_value", 4);
if(not v.contains("tuning_value"))
tuning_value = get_tuning_for({a_shape, b_shape, c_shape});
auto batch_count = get_batch_count(c_shape);
auto problem = create_problem(inputs, v);
const auto include_header = problem.GetIncludeHeader();
const auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
const auto& solution = solutions.at(tuning_value);
const auto template_str = solution.template_str;
const auto blocks_per_batch = solution.grid_size;
const auto block_size = solution.block_size;
hip_compile_options options;
options.additional_src_files = ck_headers();
auto grid_size = can_fold_batch(inputs) ? blocks_per_batch : batch_count * blocks_per_batch;
options.set_launch_params(v, grid_size * block_size, block_size);
options.inputs = inputs;
options.output = c_shape;
options.kernel_name = v.get("kernel", "ck_gemm_kernel");
options.virtual_inputs = inputs;
if(can_fold_batch(inputs))
{
auto vinputs = inputs;
fold_batch_dims(vinputs[0]);
remove_batch_dims(vinputs[1]);
std::for_each(vinputs.begin() + 2, vinputs.end(), fold_batch_dims);
options.virtual_inputs = vinputs;
}
if(v.get("check", false) or enabled(MIGRAPHX_CK_DEBUG{}))
options.params += " -DMIGRAPHX_CK_CHECK=1";
auto src = interpolate_string(ck_gemm_kernel,
{{"solution", template_str},
{"include", include_header},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"blocks_per_batch", to_string(blocks_per_batch)},
{"preamble", v.get("preamble", std::string{})},
{"kernel", options.kernel_name}});
return compile_hip_code_object(src, options);
}
value create_settings(instruction_ref ins, const operation& op) const
{
auto v = op.to_value();
v["kernel"] = "ck_gemm_kernel";
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["preamble"] = generate_pointwise(*pm, "post_ck_gemm_function") +
"\nMIGRAPHX_LIFT_CLASS(post_ck_gemm, post_ck_gemm_function);";
v["post"] = "ck_function_adaptor<post_ck_gemm>";
v["kernel"] = "ck_gemm_" + generate_name_from_ops(*pm) + "_kernel";
}
return v;
}
compiler_replace
compile(context& ctx, instruction_ref ins, const operation& op, const value& solution) const
{
auto shapes = to_shapes(ins->inputs());
auto v = create_settings(ins, op);
if(solution.is_null())
v["tuning_value"] = 4;
else
v["tuning_value"] = solution;
return {compile_op(ctx, shapes, v),
[=](module& m, instruction_ref ins2, const operation& code_object) {
if(enabled(MIGRAPHX_LOG_CK_GEMM{}))
{
std::vector<shape> gemm_shapes{
shapes[0], shapes[1], shapes.back().with_type(shapes[0].type())};
std::cout << "gpu::ck_gemm: " << to_json_string(to_value(gemm_shapes))
<< std::endl;
}
m.replace_instruction(ins2, code_object, ins2->inputs());
}};
}
optional<tuning_config>
get_tuning_config(context& ctx, instruction_ref ins, const operation& op) const
{
tuning_config tc;
auto shapes = to_shapes(ins->inputs());
auto problem = create_problem(shapes, create_settings(ins, op));
auto solutions = problem.GetSolutions(ctx.get_current_device().get_gfx_name());
tc.solutions.resize(solutions.size());
std::iota(tc.solutions.begin(), tc.solutions.end(), 0);
std::vector<shape> gemm_shapes{shapes[0], shapes[1], shapes.back()};
tc.problem = to_value(gemm_shapes);
return tc;
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -78,7 +78,9 @@ struct concat_compiler : compiler<concat_compiler>
options.params = "-Wno-float-equal";
options.kernel_name = v.get("kernel", "concat_kernel");
auto axis = find_fast_axis(options.inputs);
auto vec = vectorize::elements(ctx, axis, options.inputs);
vectorize vec{};
if(axis != v.at("axis").to<std::size_t>())
vec = vectorize::elements(ctx, axis, options.inputs);
options.set_launch_params(
v, compute_global_for(ctx, get_concat_elements(options.inputs) / vec.size, 256));
auto src = interpolate_string(
......@@ -106,7 +108,7 @@ struct concat_compiler : compiler<concat_compiler>
v["post"] = "MIGRAPHX_LIFT(post_concat)";
v["kernel"] = "concat_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
......
......@@ -80,7 +80,7 @@ struct gather_compiler : compiler<gather_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -82,7 +82,7 @@ struct gathernd_compiler : compiler<gathernd_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -122,7 +122,7 @@ struct layernorm_compiler : compiler<layernorm_compiler>
v["kernel"] =
v["layernorm"].to<std::string>() + "_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
......
......@@ -32,7 +32,7 @@ namespace gpu {
struct mlir_compiler : compiler<mlir_compiler>
{
std::vector<std::string> names() const { return {"gpu::mlir_conv"}; }
std::vector<std::string> names() const { return {"gpu::mlir_op"}; }
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
......@@ -45,10 +45,10 @@ struct mlir_compiler : compiler<mlir_compiler>
compiler_replace insert(code_object_op co) const
{
return [co = std::move(co)](module& m, instruction_ref ins) {
auto mlir = insert_mlir(m, ins, co, ins->inputs());
m.replace_instruction(ins, mlir);
};
return {std::move(co), [](module& m, instruction_ref ins, const operation& op) {
auto mlir = insert_mlir(m, ins, any_cast<code_object_op>(op), ins->inputs());
m.replace_instruction(ins, mlir);
}};
}
};
......
......@@ -92,7 +92,7 @@ struct pad_compiler : compiler<pad_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
} // namespace gpu
......
......@@ -93,10 +93,10 @@ struct pointwise_compiler : compiler<pointwise_compiler>
{
if(contains({"layout", "contiguous"}, op.name()))
{
return replace(compile_op(
return compile_op(
ctx,
to_shapes(ins->inputs()),
{{"lambda", "[](auto x) { return x; }"}, {"kernel", op.name() + "_kernel"}}));
{{"lambda", "[](auto x) { return x; }"}, {"kernel", op.name() + "_kernel"}});
}
else
{
......@@ -105,10 +105,9 @@ struct pointwise_compiler : compiler<pointwise_compiler>
auto pf = generate_pointwise(*pm, "inner_pointwise");
std::string lambda = "MIGRAPHX_LIFT(inner_pointwise)";
auto kernel_name = generate_name_from_ops(*pm) + "_kernel";
return replace(
compile_op(ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}}));
return compile_op(ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}});
}
}
};
......
......@@ -60,15 +60,6 @@ __global__ void reduce_kernel(void* input_p, void* output_p)
)__migraphx__";
static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
{
return inputs.front().elements() / inputs.back().elements();
}
static std::size_t get_reduce_elements(const std::vector<instruction_ref>& inputs)
{
return get_reduce_elements(to_shapes(inputs));
}
static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>& input_lens,
const std::vector<std::size_t>& output_lens)
{
......@@ -86,9 +77,28 @@ static std::vector<std::size_t> get_reduce_lens(const std::vector<std::size_t>&
return reduce_lens;
}
static std::string get_reduce_algo(const std::vector<shape>& inputs)
template <class T>
static shape get_reduced_shape(const shape& s, const std::vector<T>& axes)
{
auto lens = s.lens();
std::fill(lens.begin(), lens.end(), 1);
for(const auto& axis : axes)
lens[axis] = s.lens()[axis];
return shape{s.type(), lens};
}
template <class T>
static shape get_output_shape(const shape& s, const std::vector<T>& axes)
{
auto lens = s.lens();
for(const auto& axis : axes)
lens[axis] = 1;
return shape{s.type(), lens};
}
template <class ReduceLens>
static std::string get_reduce_algo(const std::vector<shape>& inputs, ReduceLens rlens)
{
auto rlens = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
const auto init = std::numeric_limits<std::size_t>::max();
// The minimum stride
auto min_stride = std::inner_product(
......@@ -103,11 +113,27 @@ static std::string get_reduce_algo(const std::vector<shape>& inputs)
return "block";
}
struct reduce_compiler : compiler<reduce_compiler>
static std::string get_reduce_algo(const std::vector<shape>& inputs)
{
auto rlens = get_reduce_lens(inputs.front().lens(), inputs.back().lens());
return get_reduce_algo(inputs, rlens);
}
struct simple_reduce_compiler : compiler<simple_reduce_compiler>
{
std::vector<std::string> names() const
{
return {"reduce", "reduce_sum", "reduce_mean", "reduce_max", "reduce_min", "reduce_prod"};
return {"simple_reduce",
"reduce_sum",
"reduce_mean",
"reduce_max",
"reduce_min",
"reduce_prod"};
}
static std::size_t get_reduce_elements(const std::vector<shape>& inputs)
{
return inputs.front().elements() / inputs.back().elements();
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
......@@ -157,45 +183,109 @@ struct reduce_compiler : compiler<reduce_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
value v = value::object{};
if(op.name() == "reduce_sum")
{
v["reduction"] = "op::sum{}";
}
else if(op.name() == "reduce_mean")
{
auto reduce_elements = get_reduce_elements(ins->inputs());
auto reduce_type = ins->inputs().front()->get_shape().type();
v["reduction"] = "op::sum{}";
std::string mean = "op::mean<" + std::to_string(reduce_elements) + ">{}";
// Use float accumulator when reduction size is too large for half
if(reduce_type == shape::half_type and reduce_elements > 16384)
v["read"] = "compose(" + mean + ", op::convert_to<float>{})";
else if(contains({shape::float_type, shape::half_type, shape::double_type},
reduce_type))
v["read"] = mean;
else
v["write"] = mean;
}
else if(op.name() == "reduce_max")
{
v["reduction"] = "op::max{}";
v["init"] = "lowest{}";
}
else if(op.name() == "reduce_min")
reduce_op r{};
r.set(ins, op);
v["reduction"] = r.reduction;
v["read"] = r.read;
v["write"] = r.write;
v["init"] = r.init;
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
static const char* const fused_reduce_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/pointwise.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
MIGRAPHX_GLOBAL void ${kernel}(${params})
{
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto y, auto... xs) {
fused_reduce<reduce::${algo}, ${reduced}>(y, partial(${lambda})(xs...));
});
}
}
} // namespace migraphx
)__migraphx__";
struct fused_reduce_compiler : compiler<fused_reduce_compiler>
{
std::vector<std::string> names() const { return {"fused_reduce"}; }
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
auto axes = v.at("axes").to_vector<std::size_t>();
auto virtual_inputs = inputs;
virtual_inputs.push_back(get_reduced_shape(inputs.front(), axes));
virtual_inputs.push_back(get_output_shape(inputs.front(), axes));
virtual_inputs = reduce_dims(virtual_inputs);
auto reduce_output_shape = virtual_inputs.back();
virtual_inputs.pop_back();
auto reduction_shape = virtual_inputs.back();
virtual_inputs.pop_back();
hip_compile_options options;
options.inputs = inputs;
options.output = inputs.back();
options.virtual_inputs = virtual_inputs;
auto faxis = find_fast_axis({options.virtual_inputs.front()});
vectorize vec{};
auto nelements = reduce_output_shape.elements();
auto algo = v.get("algo", get_reduce_algo(options.virtual_inputs, reduction_shape.lens()));
if(algo == "block")
{
v["reduction"] = "op::min{}";
v["init"] = "highest{}";
// Vectorize if the axis is a reduction axis
if(reduce_output_shape.lens()[faxis] == 1)
vec = vectorize::elements(ctx, faxis, options.virtual_inputs);
auto relements = reduction_shape.elements() / vec.size;
auto block_size = compute_block_size(relements, 256);
if(relements >= block_size * 256)
algo = "block_large";
options.set_launch_params(
v, compute_global_for(ctx, nelements * block_size, 256), block_size);
}
else if(op.name() == "reduce_prod")
else if(algo == "lane")
{
v["reduction"] = "op::product{}";
v["init"] = "1";
options.set_launch_params(v, compute_global_for(ctx, nelements, 256));
}
else
{
MIGRAPHX_THROW("Unsupported reduce");
MIGRAPHX_THROW("Unknown reduce algo: " + algo);
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
options.kernel_name = v.get("kernel", "reduce_kernel");
auto src = interpolate_string(
fused_reduce_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"algo", algo},
{"reduced", "decltype(" + generate_make_shape(reduce_output_shape) + ")"},
{"lambda", v.at("lambda").to<std::string>()},
{"transformers", make_transformer_args(vec)},
{"preamble", v.get("preamble", std::string{})}});
options.params += "-Wno-float-equal";
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
assert(not ins->module_inputs().empty());
auto v = op.to_value();
auto* rm = ins->module_inputs().front();
v["preamble"] = generate_reduce(*rm, "fused_reduce_op");
v["lambda"] = "MIGRAPHX_LIFT(fused_reduce_op)";
v["kernel"] = generate_name_from_ops(*rm) + "_kernel";
return compile_op(ctx, to_shapes(ins->inputs()), v);
}
};
} // namespace gpu
......
......@@ -92,7 +92,7 @@ struct roialign_compiler : compiler<roialign_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -85,15 +85,15 @@ struct scatternd_compiler : compiler<scatternd_compiler>
{{"reduction", reduction}}));
}
compiler_replace insert(const operation& op) const
compiler_replace insert(const operation& co) const
{
return [=](module& m, instruction_ref ins) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
};
return {co, [](module& m, instruction_ref ins, const operation& op) {
auto args = ins->inputs();
args.back() =
m.insert_instruction(ins, make_op("hip::copy"), args.front(), args.back());
args.erase(args.begin());
return m.replace_instruction(ins, op, args);
}};
}
};
......
......@@ -95,7 +95,7 @@ struct softmax_compiler : compiler<softmax_compiler>
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
return compile_op(ctx, to_shapes(ins->inputs()), op.to_value());
}
};
......
......@@ -272,6 +272,18 @@ struct integral_const_array : array<T, sizeof...(Xs)>
MIGRAPHX_DEVICE_CONSTEXPR integral_const_array() : base_array({Xs...}) {}
};
template <class T, class... Ts>
constexpr auto make_const_array(T x, Ts... xs)
{
return integral_const_array<typename T::value_type, x, xs...>{};
}
template <class T, T... Xs, class F>
constexpr auto unpack(integral_const_array<T, Xs...>, F f)
{
return f(_c<Xs>...);
}
template <class T, T... Xs, class F>
constexpr auto transform(integral_const_array<T, Xs...>, F f)
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_CK_HPP
#define MIGRAPHX_GUARD_KERNELS_CK_HPP
#include <migraphx/kernels/debug.hpp>
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <ck/utility/common_header.hpp>
#include <ck/tensor_description/tensor_descriptor.hpp>
#include <ck/tensor_description/tensor_descriptor_helper.hpp>
#include <ck/tensor_operation/gpu/device/tensor_layout.hpp>
namespace migraphx {
namespace detail {
template <class T>
struct to_ck_type_impl
{
using type = T;
};
template <>
struct to_ck_type_impl<migraphx::half>
{
using type = ck::half_t;
};
template <class T>
struct to_ck_type_impl<const T>
{
using type = const typename to_ck_type_impl<T>::type;
};
template <class Shape>
constexpr bool is_row_major()
{
constexpr auto strides = Shape{}.strides;
MIGRAPHX_ASSERT(strides.size() >= 2);
if(strides.back() == 1)
{
MIGRAPHX_ASSERT(not Shape{}.is_transposed());
return true;
}
MIGRAPHX_ASSERT(strides[strides.size() - 2] == 1);
return false;
}
} // namespace detail
template <class T>
using to_ck_type = typename detail::to_ck_type_impl<T>::type;
template <class T>
constexpr auto to_ck_pointer(T* x)
{
return static_cast<to_ck_type<T>*>(x);
}
template <class T>
constexpr auto to_ck_const_pointer(const T* x)
{
return static_cast<const to_ck_type<T>*>(x);
}
template <class Shape>
using to_ck_gemm_layout = conditional_t<detail::is_row_major<get_shape_c<Shape>>(),
ck::tensor_layout::gemm::RowMajor,
ck::tensor_layout::gemm::ColumnMajor>;
template <class Tensor>
constexpr auto to_ck_tensor()
{
constexpr auto s = get_shape_c<Tensor>{};
return sequence(s.lens.size(), [&](auto... is) {
return ck::make_naive_tensor_descriptor(ck::make_tuple(s.lens[is]...),
ck::make_tuple(s.strides[is]...));
});
}
template <class F>
struct ck_function_adaptor : F
{
template <class... Ts>
constexpr ck_function_adaptor(Ts&&... xs) : F(static_cast<Ts&&>(xs)...)
{
}
template <class T, class... Ts>
constexpr void operator()(T& out, Ts&&... xs) const
{
out = static_cast<const F&>(*this)(static_cast<Ts&&>(xs)...);
}
};
struct ck_nop
{
template <class T>
constexpr void operator()(T&) const
{
}
};
struct ck_passthrough
{
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y = x;
}
};
struct ck_scale
{
constexpr ck_scale(float s) : scale(s) {}
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y = x * static_cast<U>(scale);
}
float scale;
};
struct ck_add
{
template <class T, class U>
constexpr void operator()(T& y, U x) const
{
y += x;
}
};
#ifdef MIGRAPHX_CK_CHECK
#define MIGRAPHX_CK_STATIC_ASSERT static_assert
#else
#define MIGRAPHX_CK_STATIC_ASSERT(...)
#endif
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_CK_HPP
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_CK_GEMM_HPP
#define MIGRAPHX_GUARD_KERNELS_CK_GEMM_HPP
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <migraphx/kernels/ck.hpp>
#include <migraphx/kernels/gemm_batcher.hpp>
namespace migraphx {
// In CK, the B matrix is ordered as N,K instead of K,N
template <class Dims>
constexpr auto ck_transposeb_dims(Dims dims)
{
return unpack(dims, [](auto k, auto n) { return make_const_array(n, k); });
}
template <class Tensor>
using ck_transposeb = decltype(make_shape(ck_transposeb_dims(get_shape_c<Tensor>{}.lens),
ck_transposeb_dims(get_shape_c<Tensor>{}.strides)));
template <class G, class E, class A, class B, class... Ds>
__device__ void ck_gemm_matrix(E e, A a, B b, Ds... ds)
{
constexpr auto desc = G::make_descriptor(to_ck_tensor<A>(),
to_ck_tensor<ck_transposeb<B>>(),
ck::make_tuple(to_ck_tensor<Ds>()...),
to_ck_tensor<E>());
static_assert(desc.is_valid, "Invalid ck gemm.");
G::Run(desc,
to_ck_const_pointer(a.data()),
to_ck_const_pointer(b.data()),
ck::make_tuple(to_ck_const_pointer(ds.data())...),
to_ck_pointer(e.data()));
}
template <class G, index_int BlocksPerBatch, class... Ts>
__device__ void ck_gemm(Ts... xs)
{
gemm_batch_args(make_index(), _c<BlocksPerBatch>, xs...)(
[](auto... ys) { ck_gemm_matrix<G>(ys...); });
}
} // namespace migraphx
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment