Commit cab91417 authored by Artur Wojcik's avatar Artur Wojcik
Browse files

Merge branch 'develop' into uif2-initial

parents 22488a45 48c4453c
 isinf_half_test:N

t1t2"IsInfisinf_half_testZ
t1



b
t2
 

B
\ No newline at end of file
 loop_test_implicit_tripcnt:

max_trip_count
keep_going_cond
bb_loop my_local_loopuser_defined_vals_loop"Loop*
body2

a
b_inmy_local"Add

a
b_in
a_sub_b_in"Sub
+
my_local
a_sub_b_in
keep_going"Greater
0
a_sub_b_in
a_sub_b_inuser_defined_vals"AddbodyZ
iteration_num

Z
keep_going_inp
 
Z
b_in

b
keep_going
 
b
a_sub_b_in

b
my_local

b
user_defined_vals

loop_test_implicit_tripcnt*:Bmax_trip_countZ
keep_going_cond
 
Z
a

Z
b

b
b_loop

b(
user_defined_vals_loop


B
\ No newline at end of file
......@@ -3413,6 +3413,82 @@ TEST_CASE(if_tuple_test)
EXPECT(p == prog);
}
TEST_CASE(isinf_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto ret = mm->add_instruction(migraphx::make_op("isinf"), t1);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_neg_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("less"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_neg_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_double_pos_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::double_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("greater"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_double_pos_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_no_detect_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
mm->add_parameter("t1", s);
auto ret = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}),
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::bool_type}, {false}}));
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_no_detect_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isnan_float_test)
{
migraphx::program p;
......@@ -5712,9 +5788,9 @@ TEST_CASE(quantizelinear_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, round, s, 0, 255);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -5737,9 +5813,9 @@ TEST_CASE(quantizelinear_int32_test)
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l0);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto s = round->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, round, s, 0, 255);
auto nearbyint = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto s = nearbyint->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div, nearbyint, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
......@@ -5759,7 +5835,7 @@ TEST_CASE(quantizelinear_zero_point_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto l2_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l2);
l2_mbcast = mm->add_instruction(
......@@ -5792,7 +5868,7 @@ migraphx::program make_quantizelinear_axis_prog()
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_bcast);
auto round = mm->add_instruction(migraphx::make_op("round"), div);
auto round = mm->add_instruction(migraphx::make_op("nearbyint"), div);
auto l2_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l2);
l2_bcast = mm->add_instruction(
......@@ -6481,9 +6557,8 @@ TEST_CASE(resize_nonstd_input_test)
auto tx =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), inx);
mm->add_instruction(migraphx::make_op("undefined"));
auto tx_cont = mm->add_instruction(migraphx::make_op("contiguous"), tx);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx_cont);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), lrsp, li);
mm->add_return({r});
......@@ -6922,7 +6997,7 @@ TEST_CASE(round_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::double_type, {10, 5}});
mm->add_instruction(migraphx::make_op("round"), input);
mm->add_instruction(migraphx::make_op("nearbyint"), input);
auto prog = optimize_onnx("round_test.onnx");
EXPECT(p == prog);
......@@ -7578,6 +7653,25 @@ TEST_CASE(slice_var_input_dyn1)
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_default_steps)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {{3, 8}, {2, 2}}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int64_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int64_type, {2}});
auto axes = mm->add_parameter("axes", migraphx::shape{migraphx::shape::int64_type, {2}});
mm->add_literal({{migraphx::shape::int64_type, {2}}, {1, 1}});
auto ret = mm->add_instruction(migraphx::make_op("slice"), data, starts, ends, axes);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {3, 8};
auto prog = parse_onnx("slice_var_input_default_steps.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_steps_error)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_var_input_steps_error.onnx"); }));
......@@ -8342,6 +8436,27 @@ TEST_CASE(upsample_test)
EXPECT(p == prog);
}
TEST_CASE(upsample_ver7_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}};
auto ix = mm->add_parameter("X", sx);
migraphx::shape si{migraphx::shape::int32_type, {1, 1, 4, 6}};
std::vector<int> ind = {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3};
auto li = mm->add_literal(migraphx::literal(si, ind));
auto rsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4}}}), ix);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), rsp, li);
mm->add_return({r});
auto prog = migraphx::parse_onnx("upsample_ver7_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unknown_test_throw_print_error)
{
migraphx::onnx_options options;
......
reshape_variable_input_test0:q

0
12"Reshapereshape_variable_input_test0Z
0



Z
1

b
2


B
\ No newline at end of file
 round_half_test:J
xy"Roundround_half_testZ
x



b
y



B
\ No newline at end of file
......@@ -1014,6 +1014,95 @@ TEST_CASE(instance_norm_3d_test)
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(isinf_half_test)
{
migraphx::program p = migraphx::parse_onnx("isinf_half_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
migraphx::parameter_map pp;
migraphx::half nan = std::numeric_limits<migraphx::half>::quiet_NaN();
migraphx::half infinity = std::numeric_limits<migraphx::half>::infinity();
migraphx::half max = std::numeric_limits<migraphx::half>::max();
migraphx::half min = std::numeric_limits<migraphx::half>::min();
migraphx::half val = migraphx::half(3.6);
std::vector<migraphx::half> data = {-infinity, nan, min, val, max, infinity};
pp["t1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1, 0, 0, 0, 0, 1};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(isinf_neg_test)
{
migraphx::program p = migraphx::parse_onnx("isinf_neg_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
migraphx::parameter_map pp;
float nan = std::numeric_limits<float>::quiet_NaN();
float infinity = std::numeric_limits<float>::infinity();
float max = std::numeric_limits<float>::max();
float min = std::numeric_limits<float>::min();
std::vector<float> data = {-infinity, nan, min, 3.6, max, infinity};
pp["t1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1, 0, 0, 0, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(isinf_double_pos_test)
{
migraphx::program p = migraphx::parse_onnx("isinf_double_pos_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape s{migraphx::shape::double_type, {2, 3}};
migraphx::parameter_map pp;
double nan = std::numeric_limits<double>::quiet_NaN();
double infinity = std::numeric_limits<double>::infinity();
double max = std::numeric_limits<double>::max();
double min = std::numeric_limits<double>::min();
std::vector<double> data = {-infinity, nan, min, 3.6, max, infinity};
pp["t1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 0, 0, 0, 0, 1};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(isinf_no_detect_test)
{
migraphx::program p = migraphx::parse_onnx("isinf_no_detect_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
migraphx::parameter_map pp;
float nan = std::numeric_limits<float>::quiet_NaN();
float infinity = std::numeric_limits<float>::infinity();
float max = std::numeric_limits<float>::max();
float min = std::numeric_limits<float>::min();
std::vector<double> data = {-infinity, nan, min, 3.6, max, infinity};
pp["t1"] = migraphx::argument(s, data.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 0, 0, 0, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(layer_norm_test)
{
std::vector<float> scale{1.2, 0.8};
......@@ -1967,6 +2056,43 @@ TEST_CASE(reversesequence_time_verify_test)
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(round_half_test)
{
migraphx::program p = migraphx::parse_onnx("round_half_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape xs{migraphx::shape::half_type, {4, 4}};
std::vector<float> tmp = {-3.51,
-3.5,
-3.49,
-2.51,
-2.50,
-2.49,
-1.6,
-1.5,
-0.51,
-0.5,
0.5,
0.6,
2.4,
2.5,
3.5,
4.5};
std::vector<migraphx::half> data{tmp.cbegin(), tmp.cend()};
migraphx::parameter_map param_map;
param_map["x"] = migraphx::argument(xs, data.data());
auto result = p.eval(param_map).back();
std::vector<migraphx::half> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
tmp = {-4.0, -4.0, -3.0, -3.0, -2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 4.0, 4.0};
std::vector<migraphx::half> gold{tmp.cbegin(), tmp.cend()};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(selu_test)
{
migraphx::program p = migraphx::parse_onnx("selu_test.onnx");
......
......@@ -83,7 +83,6 @@ def disabled_tests_onnx_1_7_0(backend_test):
backend_test.exclude(r'test_nonmaxsuppression_two_batches_cpu')
backend_test.exclude(r'test_nonmaxsuppression_two_classes_cpu')
backend_test.exclude(r'test_nonzero_example_cpu')
backend_test.exclude(r'test_round_cpu')
backend_test.exclude(r'test_softmax_axis_0_cpu')
backend_test.exclude(r'test_softmax_axis_1_cpu')
backend_test.exclude(r'test_softmax_default_axis_cpu')
......@@ -135,9 +134,6 @@ def disabled_tests_onnx_1_7_0(backend_test):
backend_test.exclude(r'test_hardmax_example_cpu')
backend_test.exclude(r'test_hardmax_negative_axis_cpu')
backend_test.exclude(r'test_hardmax_one_hot_cpu')
backend_test.exclude(r'test_isinf_cpu')
backend_test.exclude(r'test_isinf_negative_cpu')
backend_test.exclude(r'test_isinf_positive_cpu')
backend_test.exclude(r'test_matmulinteger_cpu')
backend_test.exclude(r'test_maxpool_2d_uint8_cpu')
backend_test.exclude(r'test_maxunpool_export_with_output_shape_cpu')
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/program.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/verify.hpp>
#include <test.hpp>
TEST_CASE(isinf_double_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {2, 3}};
auto inf_val = std::numeric_limits<double>::infinity();
std::vector<double> data0 = {1.2, 5.2, inf_val, -inf_val, 0., 100.};
auto l1 = mm->add_literal(migraphx::literal{s, data0});
mm->add_instruction(migraphx::make_op("isinf"), l1);
p.compile(migraphx::make_target("ref"));
auto result = p.eval({}).back();
std::vector<double> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<double> gold = {0, 0, 1, 1, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
TEST_CASE(isinf_float_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
auto inf_val = std::numeric_limits<float>::infinity();
std::vector<float> data0 = {1.2, 5.2, inf_val, -inf_val, 0., 100.};
auto l1 = mm->add_literal(migraphx::literal{s, data0});
mm->add_instruction(migraphx::make_op("isinf"), l1);
p.compile(migraphx::make_target("ref"));
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 0, 1, 1, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
TEST_CASE(isinf_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
auto inf_val = std::numeric_limits<migraphx::half>::infinity();
migraphx::half a{1.2};
migraphx::half b{5.2};
std::vector<migraphx::half> data0 = {a, b, inf_val, -inf_val, b, a};
auto l1 = mm->add_literal(migraphx::literal{s, data0});
mm->add_instruction(migraphx::make_op("isinf"), l1);
p.compile(migraphx::make_target("ref"));
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 0, 1, 1, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
TEST_CASE(isinf_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{2, 2}, {3, 8}}};
auto input = mm->add_parameter("X", s);
auto inf_val = std::numeric_limits<migraphx::half>::infinity();
mm->add_instruction(migraphx::make_op("isinf"), input);
p.compile(migraphx::make_target("ref"));
std::vector<float> input_data = {1.2, 5.2, inf_val, -inf_val, 0., 100.};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {2, 3}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {0, 0, 1, 1, 0, 0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
......@@ -30,39 +30,71 @@
#include <test.hpp>
TEST_CASE(round_test)
TEST_CASE(nearbyint_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {9}};
auto l =
mm->add_literal(migraphx::literal{s, {1.1, 1.5, 1.6, -1.1, -1.5, -1.6, 0.0, 2.0, -2.0}});
mm->add_instruction(migraphx::make_op("round"), l);
migraphx::shape s{migraphx::shape::float_type, {4, 4}};
auto l = mm->add_literal(migraphx::literal{s,
{-3.51,
-3.5,
-3.49,
-2.51,
-2.50,
-2.49,
-1.6,
-1.5,
-0.51,
-0.5,
0.5,
0.6,
2.4,
2.5,
3.5,
4.5}});
mm->add_instruction(migraphx::make_op("nearbyint"), l);
p.compile(migraphx::make_target("ref"));
auto result = p.eval({}).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 2.0, 2.0, -1.0, -2.0, -2.0, 0.0, 2.0, -2.0};
std::vector<float> gold = {
-4.0, -4.0, -3.0, -3.0, -2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 4.0, 4.0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
TEST_CASE(round_dyn_test)
TEST_CASE(nearbyint_dyn_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape::dynamic_dimension dd{4, 10};
migraphx::shape s{migraphx::shape::float_type, {dd}};
auto input = mm->add_parameter("X", s);
mm->add_instruction(migraphx::make_op("round"), input);
mm->add_instruction(migraphx::make_op("nearbyint"), input);
p.compile(migraphx::make_target("ref"));
std::vector<float> input_data{1.1, 1.5, 1.6, -1.1, -1.5, -1.6, 0.0, 2.0, -2.0};
std::vector<float> input_data{-3.51,
-3.5,
-3.49,
-2.51,
-2.50,
-2.49,
-1.6,
-1.5,
-0.51,
-0.5,
0.5,
0.6,
2.4,
2.5,
3.5,
4.5};
migraphx::parameter_map params0;
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {9}};
migraphx::shape input_fixed_shape0{migraphx::shape::float_type, {16}};
params0["X"] = migraphx::argument(input_fixed_shape0, input_data.data());
auto result = p.eval(params0).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {1.0, 2.0, 2.0, -1.0, -2.0, -2.0, 0.0, 2.0, -2.0};
std::vector<float> gold = {
-4.0, -4.0, -3.0, -3.0, -2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 4.0, 4.0};
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
......@@ -55,7 +55,7 @@ TEST_CASE(quantizelinear_1)
std::vector<float> results_vector(18);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{
-128, 127, 65, -128, 1, 1, -1, 100, 92, -128, 127, 65, -128, 1, 1, -1, 100, 92};
-128, 127, 64, -128, 1, 1, -1, 100, 92, -128, 127, 64, -128, 1, 1, -1, 100, 92};
EXPECT(results_vector == gold);
}
......@@ -80,6 +80,6 @@ TEST_CASE(quantizelinear_2)
auto result = p1.eval({}).back();
std::vector<float> results_vector(18);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{0, 255, 65, 0, 2, 2, 0, 255, 255, 0, 255, 65, 0, 2, 2, 0, 255, 255};
std::vector<float> gold{0, 255, 64, 0, 2, 2, 0, 255, 255, 0, 255, 64, 0, 2, 2, 0, 255, 255};
EXPECT(results_vector == gold);
}
......@@ -226,7 +226,6 @@ TEST_CASE(reshape_2in_test1)
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify::verify_rms_range(results_vector, gold));
}
TEST_CASE(reshape_2in_elements_runtime_error)
{
migraphx::program p;
......
......@@ -237,4 +237,86 @@ TEST_CASE(const_slice_4input)
EXPECT(m0 == m1);
}
TEST_CASE(static_dimensions_of0)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {2, 4, 4}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins =
m0.add_instruction(migraphx::make_op("dimensions_of", {{"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {2, 4, 4}};
m1.add_parameter("data", s);
migraphx::shape lit_shape{migraphx::shape::int64_type, {3}};
std::vector<int64_t> lit_data = {2, 4, 4};
auto lit_ins = m1.add_literal(migraphx::literal{lit_shape, lit_data});
m1.add_return({lit_ins});
}
EXPECT(m0 == m1);
}
TEST_CASE(static_dimensions_of1)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 4}, {4, 4}}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m0.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 4}, {4, 4}}};
m1.add_parameter("data", s);
migraphx::shape lit_shape{migraphx::shape::int64_type, {2}};
std::vector<int64_t> lit_data = {4, 4};
auto lit_ins = m1.add_literal(migraphx::literal{lit_shape, lit_data});
m1.add_return({lit_ins});
}
EXPECT(m0 == m1);
}
// Does nothing because the dynamic_dimensions from start to end
// are not all fixed
TEST_CASE(static_dimensions_of_nonfixed)
{
// dead_code_elimination will get rid of atan
migraphx::module m0;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 8}, {4, 8}}};
auto input = m0.add_parameter("data", s);
auto atan_ins = m0.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m0.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m0.add_return({dimensions_of_ins});
}
run_pass(m0);
migraphx::module m1;
{
migraphx::shape s{migraphx::shape::float_type, {{2, 4, {2, 4}}, {4, 8}, {4, 8}}};
auto input = m1.add_parameter("data", s);
auto atan_ins = m1.add_instruction(migraphx::make_op("atan"), input);
auto dimensions_of_ins = m1.add_instruction(
migraphx::make_op("dimensions_of", {{"start", 1}, {"end", 3}}), atan_ins);
m1.add_return({dimensions_of_ins});
}
EXPECT(m0 == m1);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -1345,7 +1345,7 @@ TEST_CASE(transpose_contiguous_unsqueeze_unary)
auto cont_ins = m1.add_instruction(migraphx::make_op("contiguous"), transpose_ins);
auto unsq_ins =
m1.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), cont_ins);
auto round = m1.add_instruction(migraphx::make_op("round"), unsq_ins);
auto round = m1.add_instruction(migraphx::make_op("nearbyint"), unsq_ins);
m1.add_instruction(pass_op{}, round);
}
run_pass(m1);
......@@ -1354,7 +1354,7 @@ TEST_CASE(transpose_contiguous_unsqueeze_unary)
auto x = m2.add_parameter("x", {migraphx::shape::float_type, {2, 8, 5, 5}});
auto transpose_ins =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 3, 1}}}), x);
auto round = m2.add_instruction(migraphx::make_op("round"), transpose_ins);
auto round = m2.add_instruction(migraphx::make_op("nearbyint"), transpose_ins);
auto cont_ins = m2.add_instruction(migraphx::make_op("contiguous"), round);
auto unsq_ins =
m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {2}}}), cont_ins);
......
......@@ -27,16 +27,21 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_round : verify_program<test_round>
struct gemm_2args_mm_8 : verify_program<gemm_2args_mm_8>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape a_shape{migraphx::shape::float_type, {2, 128, 32}, {4096, 1, 128}};
migraphx::shape b_shape{migraphx::shape::float_type, {32, 32}};
auto a = mm->add_parameter("a", a_shape);
auto b = mm->add_parameter("b", b_shape);
auto bb = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {2, 32, 32}}}), b);
mm->add_instruction(migraphx::make_op("dot"), a, bb);
migraphx::shape s{migraphx::shape::float_type, {2, 3, 4, 6}};
auto param = mm->add_parameter("x", s);
mm->add_instruction(migraphx::make_op("round"), param);
return p;
};
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment