Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
ca300bd6
Unverified
Commit
ca300bd6
authored
Oct 19, 2023
by
Chris Austen
Committed by
GitHub
Oct 19, 2023
Browse files
Merge branch 'develop' into blas_tuning
parents
5adb597c
e7486577
Changes
67
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
974 additions
and
0 deletions
+974
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+494
-0
test/onnx/group_norm_3d_half_test.onnx
test/onnx/group_norm_3d_half_test.onnx
+30
-0
test/onnx/group_norm_3d_test.onnx
test/onnx/group_norm_3d_test.onnx
+25
-0
test/onnx/group_norm_4d_half_test.onnx
test/onnx/group_norm_4d_half_test.onnx
+32
-0
test/onnx/group_norm_4d_test.onnx
test/onnx/group_norm_4d_test.onnx
+27
-0
test/onnx/group_norm_5d_half_test.onnx
test/onnx/group_norm_5d_half_test.onnx
+34
-0
test/onnx/group_norm_5d_test.onnx
test/onnx/group_norm_5d_test.onnx
+29
-0
test/onnx/group_norm_invalid_bias_shape_test.onnx
test/onnx/group_norm_invalid_bias_shape_test.onnx
+27
-0
test/onnx/group_norm_invalid_input_count_error_test.onnx
test/onnx/group_norm_invalid_input_count_error_test.onnx
+22
-0
test/onnx/group_norm_invalid_input_shape_error_test.onnx
test/onnx/group_norm_invalid_input_shape_error_test.onnx
+23
-0
test/onnx/group_norm_invalid_num_groups_error_test.onnx
test/onnx/group_norm_invalid_num_groups_error_test.onnx
+27
-0
test/onnx/group_norm_invalid_scale_shape_test.onnx
test/onnx/group_norm_invalid_scale_shape_test.onnx
+27
-0
test/onnx/group_norm_missing_attribute_error_test.onnx
test/onnx/group_norm_missing_attribute_error_test.onnx
+21
-0
test/onnx/group_norm_small_eps_half_test.onnx
test/onnx/group_norm_small_eps_half_test.onnx
+30
-0
test/onnx/layer_norm_2d_axis_minus_one_test.onnx
test/onnx/layer_norm_2d_axis_minus_one_test.onnx
+22
-0
test/onnx/layer_norm_2d_axis_one_test.onnx
test/onnx/layer_norm_2d_axis_one_test.onnx
+22
-0
test/onnx/layer_norm_2d_axis_zero_test.onnx
test/onnx/layer_norm_2d_axis_zero_test.onnx
+0
-0
test/onnx/layer_norm_3d_half_test.onnx
test/onnx/layer_norm_3d_half_test.onnx
+28
-0
test/onnx/layer_norm_3d_test.onnx
test/onnx/layer_norm_3d_test.onnx
+24
-0
test/onnx/layer_norm_4d_half_test.onnx
test/onnx/layer_norm_4d_half_test.onnx
+30
-0
No files found.
test/onnx/gen_onnx.py
View file @
ca300bd6
...
@@ -2722,6 +2722,119 @@ def group_conv_test():
...
@@ -2722,6 +2722,119 @@ def group_conv_test():
return ([node], [x, y], [z])
return ([node], [x, y], [z])
def group_norm_test(x_dims,
scale_dims,
bias_dims,
y_dims,
num_groups,
eps_value=1e-5,
dtype=TensorProto.FLOAT):
x = helper.make_tensor_value_info('x', dtype, x_dims)
scale = helper.make_tensor_value_info('scale', dtype, scale_dims)
bias = helper.make_tensor_value_info('bias', dtype, bias_dims)
y = helper.make_tensor_value_info('y', dtype, y_dims)
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'],
num_groups=num_groups,
epsilon=eps_value)
return ([node], [x, scale, bias], [y])
@onnx_test()
def group_norm_3d_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2], 2)
@onnx_test()
def group_norm_3d_half_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
2,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_4d_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 2)
@onnx_test()
def group_norm_4d_half_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3],
2,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_5d_test():
return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3], 1)
@onnx_test()
def group_norm_5d_half_test():
return group_norm_test([3, 3, 3, 3, 3], [1], [1], [3, 3, 3, 3, 3],
1,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_small_eps_half_test():
return group_norm_test([1, 4, 2], [2], [2], [1, 4, 2],
2,
eps_value=1e-12,
dtype=TensorProto.FLOAT16)
@onnx_test()
def group_norm_invalid_num_groups_error_test():
return group_norm_test([1, 4, 3, 3], [2], [2], [1, 4, 3, 3], 3)
@onnx_test()
def group_norm_missing_attribute_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4])
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'])
return ([node], [x, scale, bias], [y])
@onnx_test()
def group_norm_invalid_input_count_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3, 3])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 3, 3])
node = onnx.helper.make_node('GroupNormalization',
inputs=['x', 'scale'],
outputs=['y'],
num_groups=2)
return ([node], [x, scale], [y])
@onnx_test()
def group_norm_invalid_input_shape_error_test():
return group_norm_test([1, 4], [2], [2], [1, 4], 2)
@onnx_test()
def group_norm_invalid_scale_shape_test():
return group_norm_test([1, 4, 3, 3], [1], [2], [1, 4, 3, 3], 2)
@onnx_test()
def group_norm_invalid_bias_shape_test():
return group_norm_test([1, 4, 3, 3], [2], [3], [1, 4, 3, 3], 2)
@onnx_test()
@onnx_test()
def hardsigmoid_default_test():
def hardsigmoid_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
...
@@ -3804,6 +3917,110 @@ def layernorm_test():
...
@@ -3804,6 +3917,110 @@ def layernorm_test():
bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
def make_layer_norm(shape, axis, dtype=TensorProto.FLOAT):
norm_axis = axis + len(shape) if axis < 0 else axis
x = helper.make_tensor_value_info('x', dtype, shape)
scale = helper.make_tensor_value_info('scale', dtype, shape[norm_axis:])
bias = helper.make_tensor_value_info('bias', dtype, shape[norm_axis:])
y = helper.make_tensor_value_info('y', dtype, shape)
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale', 'bias'],
outputs=['y'],
axis=axis)
return ([node], [x, scale, bias], [y])
@onnx_test()
def layer_norm_invalid_shape_error_test():
return make_layer_norm([3], 0)
@onnx_test()
def layer_norm_2d_axis_zero_test():
return make_layer_norm([3, 4], 0)
@onnx_test()
def layer_norm_2d_axis_one_test():
return make_layer_norm([3, 4], 1)
@onnx_test()
def layer_norm_2d_axis_minus_one_test():
return make_layer_norm([3, 4], -1)
@onnx_test()
def layer_norm_3d_test():
return make_layer_norm([1, 4, 2], -1)
@onnx_test()
def layer_norm_3d_half_test():
return make_layer_norm([1, 4, 2], -1, TensorProto.FLOAT16)
@onnx_test()
def layer_norm_4d_test():
return make_layer_norm([3, 3, 3, 3], -1)
@onnx_test()
def layer_norm_4d_half_test():
return make_layer_norm([3, 3, 3, 3], -1, TensorProto.FLOAT16)
@onnx_test()
def layer_norm_invalid_axis_error_test():
return make_layer_norm([1, 4, 2], 1000)
@onnx_test()
def layer_norm_invalid_minus_axis_error_test():
return make_layer_norm([1, 4, 2], -1000)
@onnx_test()
def layer_norm_invalid_input_count_error_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x'],
outputs=['y'])
return ([node], [x], [y])
@onnx_test()
def layer_norm_without_bias_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale'],
outputs=['y'])
return ([node], [x, scale], [y])
@onnx_test()
def layer_norm_small_eps_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 2])
scale = helper.make_tensor_value_info('scale', TensorProto.FLOAT16, [2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 2])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'scale'],
outputs=['y'],
epsilon=1e-12)
return ([node], [x, scale], [y])
@onnx_test()
@onnx_test()
def leaky_relu_test():
def leaky_relu_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
...
@@ -4890,6 +5107,32 @@ def pad_test():
...
@@ -4890,6 +5107,32 @@ def pad_test():
return ([node], [x], [y])
return ([node], [x], [y])
@onnx_test()
def pad_asym_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node('Pad',
inputs=['0'],
pads=[0, 1, 0, 3, 0, 2, 0, 4],
outputs=['1'])
return ([node], [x], [y])
@onnx_test()
def pad_asym_invalid_pads_error_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node('Pad',
inputs=['0'],
pads=[0, 1, 0, 3, 0, 2],
outputs=['1'])
return ([node], [x], [y])
@onnx_test()
@onnx_test()
def pad_3arg_test():
def pad_3arg_test():
values = np.array([1])
values = np.array([1])
...
@@ -4922,6 +5165,129 @@ def pad_3arg_test():
...
@@ -4922,6 +5165,129 @@ def pad_3arg_test():
return ([arg_val, arg_pad, node], [x], [y])
return ([arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_axes_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1, 3])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_invalid_axes_error_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1, 2, 3])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
def pad_4arg_neg_axes_test():
values = np.array([1])
val_tensor = helper.make_tensor(name='val',
data_type=TensorProto.FLOAT,
dims=values.reshape(()).shape,
vals=values.astype(float))
arg_val = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_val'],
value=val_tensor)
sizes = np.array([1, 3, 2, 4])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([-3, -1])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 6, 4, 12])
node = onnx.helper.make_node(
'Pad', inputs=['0', 'arg_pad', 'arg_val', 'arg_axes'], outputs=['1'])
return ([arg_axes, arg_val, arg_pad, node], [x], [y])
@onnx_test()
@onnx_test()
def pad_reflect_test():
def pad_reflect_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
...
@@ -4945,6 +5311,39 @@ def pad_reflect_test():
...
@@ -4945,6 +5311,39 @@ def pad_reflect_test():
return ([arg_pad, node], [x], [y])
return ([arg_pad, node], [x], [y])
@onnx_test()
def pad_reflect_with_axes_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 2])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [2, 5])
sizes = np.array([2, 1])
pad_tensor = helper.make_tensor(name='pad_size',
data_type=TensorProto.INT32,
dims=sizes.shape,
vals=sizes.astype(int))
arg_pad = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_pad'],
value=pad_tensor)
axes = np.array([1])
axes_tensor = helper.make_tensor(name='pad_axes',
data_type=TensorProto.INT32,
dims=axes.shape,
vals=axes.astype(int))
arg_axes = onnx.helper.make_node('Constant',
inputs=[],
outputs=['arg_axes'],
value=axes_tensor)
node = onnx.helper.make_node('Pad',
mode='reflect',
inputs=['0', 'arg_pad', 'arg_axes'],
outputs=['1'])
return ([arg_axes, arg_pad, node], [x], [y])
@onnx_test()
@onnx_test()
def pad_reflect_multiaxis_test():
def pad_reflect_multiaxis_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [2, 3])
...
@@ -6736,6 +7135,101 @@ def shape_gather_test():
...
@@ -6736,6 +7135,101 @@ def shape_gather_test():
return ([node_const, node_shape, node_gather], [x], [z])
return ([node_const, node_shape, node_gather], [x], [z])
@onnx_test()
def shrink_hard_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_soft_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
bias=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=-5.0,
bias=1.0,
)
return ([node], [x], [y])
@onnx_test()
def shrink_verify2_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [5])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=-6.0,
bias=5.0,
)
return ([node], [x], [y])
@onnx_test()
def shrink_int8_test():
x = helper.make_tensor_value_info('x', TensorProto.INT8, [3, 3])
y = helper.make_tensor_value_info('y', TensorProto.INT8, [3, 3])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=1.5,
bias=1.5,
)
return ([node], [x], [y])
@onnx_test()
def shrink_uint8_test():
x = helper.make_tensor_value_info('x', TensorProto.UINT8, [3, 3])
y = helper.make_tensor_value_info('y', TensorProto.UINT8, [3, 3])
node = onnx.helper.make_node(
"Shrink",
inputs=["x"],
outputs=["y"],
lambd=5.0,
bias=-4.5,
)
return ([node], [x], [y])
@onnx_test()
@onnx_test()
def sign_test():
def sign_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [10, 5])
...
...
test/onnx/group_norm_3d_half_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_3d_half_test:
M
x
scale
biasy"GroupNormalization*
epsilon'7*
num_groupsgroup_norm_3d_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_3d_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_3d_test:
:
x
scale
biasy"GroupNormalization*
num_groupsgroup_norm_3d_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_4d_half_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_4d_half_test:
M
x
scale
biasy"GroupNormalization*
epsilon'7*
num_groupsgroup_norm_4d_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_4d_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_4d_test:
:
x
scale
biasy"GroupNormalization*
num_groupsgroup_norm_4d_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_5d_half_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_5d_half_test:
M
x
scale
biasy"GroupNormalization*
epsilon'7*
num_groupsgroup_norm_5d_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_5d_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_5d_test:
:
x
scale
biasy"GroupNormalization*
num_groupsgroup_norm_5d_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_invalid_bias_shape_test.onnx
0 → 100644
View file @
ca300bd6
"group_norm_invalid_bias_shape_test:
:
x
scale
biasy"GroupNormalization*
num_groups"group_norm_invalid_bias_shape_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_invalid_input_count_error_test.onnx
0 → 100644
View file @
ca300bd6
)group_norm_invalid_input_count_error_test:
4
x
scaley"GroupNormalization*
num_groups)group_norm_invalid_input_count_error_testZ
x
Z
scale
b
y
B
\ No newline at end of file
test/onnx/group_norm_invalid_input_shape_error_test.onnx
0 → 100644
View file @
ca300bd6
)group_norm_invalid_input_shape_error_test:
:
x
scale
biasy"GroupNormalization*
num_groups)group_norm_invalid_input_shape_error_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_invalid_num_groups_error_test.onnx
0 → 100644
View file @
ca300bd6
(group_norm_invalid_num_groups_error_test:
:
x
scale
biasy"GroupNormalization*
num_groups(group_norm_invalid_num_groups_error_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_invalid_scale_shape_test.onnx
0 → 100644
View file @
ca300bd6
#group_norm_invalid_scale_shape_test:
:
x
scale
biasy"GroupNormalization*
num_groups#group_norm_invalid_scale_shape_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_missing_attribute_error_test.onnx
0 → 100644
View file @
ca300bd6
'group_norm_missing_attribute_error_test:
'
x
scale
biasy"GroupNormalization'group_norm_missing_attribute_error_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/group_norm_small_eps_half_test.onnx
0 → 100644
View file @
ca300bd6
group_norm_small_eps_half_test:
M
x
scale
biasy"GroupNormalization*
epsilon̼+*
num_groupsgroup_norm_small_eps_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/layer_norm_2d_axis_minus_one_test.onnx
0 → 100644
View file @
ca300bd6
!layer_norm_2d_axis_minus_one_test:
=
x
scale
biasy"LayerNormalization*
axis!layer_norm_2d_axis_minus_one_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/layer_norm_2d_axis_one_test.onnx
0 → 100644
View file @
ca300bd6
layer_norm_2d_axis_one_test:
4
x
scale
biasy"LayerNormalization*
axislayer_norm_2d_axis_one_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/layer_norm_2d_axis_zero_test.onnx
0 → 100644
View file @
ca300bd6
File added
test/onnx/layer_norm_3d_half_test.onnx
0 → 100644
View file @
ca300bd6
layer_norm_3d_half_test:
=
x
scale
biasy"LayerNormalization*
axislayer_norm_3d_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/layer_norm_3d_test.onnx
0 → 100644
View file @
ca300bd6
layer_norm_3d_test:
=
x
scale
biasy"LayerNormalization*
axislayer_norm_3d_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
test/onnx/layer_norm_4d_half_test.onnx
0 → 100644
View file @
ca300bd6
layer_norm_4d_half_test:
=
x
scale
biasy"LayerNormalization*
axislayer_norm_4d_half_testZ
x
Z
scale
Z
bias
b
y
B
\ No newline at end of file
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment