Commit bc5d7f75 authored by Paul's avatar Paul
Browse files

Merge from develop

parents 47c0854d a5b0afa0
#ifndef MIGRAPH_GUARD_INSTRUCTION_REF_HPP
#define MIGRAPH_GUARD_INSTRUCTION_REF_HPP
#ifndef MIGRAPHX_GUARD_INSTRUCTION_REF_HPP
#define MIGRAPHX_GUARD_INSTRUCTION_REF_HPP
#include <list>
#include <functional>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct instruction;
using instruction_ref = std::list<instruction>::iterator;
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_RTGLIB_ITERATOR_FOR_HPP
#define MIGRAPH_GUARD_RTGLIB_ITERATOR_FOR_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_ITERATOR_FOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_ITERATOR_FOR_HPP
#include <cassert>
#include <type_traits>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class T>
struct iterator_for_range
......@@ -17,9 +17,9 @@ struct iterator_for_range
struct iterator
{
base_iterator i;
base_iterator operator*() { return i; }
base_iterator operator*() const { return i; }
base_iterator operator++() { return ++i; }
bool operator!=(const iterator& rhs) { return i != rhs.i; }
bool operator!=(const iterator& rhs) const { return i != rhs.i; }
};
iterator begin()
......@@ -39,7 +39,7 @@ iterator_for_range<T> iterator_for(T& x)
return {&x};
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_LITERAL_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_LITERAL_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_LITERAL_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_LITERAL_HPP
#include <migraph/shape.hpp>
#include <migraph/shape_for_each.hpp>
#include <migraph/argument.hpp>
#include <migraph/tensor_view.hpp>
#include <migraph/raw_data.hpp>
#include <migraph/make_shared_array.hpp>
#include <migraph/config.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/tensor_view.hpp>
#include <migraphx/raw_data.hpp>
#include <migraphx/make_shared_array.hpp>
#include <migraphx/config.hpp>
#include <memory>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
/**
* @brief Represents a raw literal
......@@ -124,7 +124,7 @@ literal transform(literal l1, literal l2, F f)
return result;
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_MAKE_SHARED_ARRAY_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_MAKE_SHARED_ARRAY_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_MAKE_SHARED_ARRAY_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_MAKE_SHARED_ARRAY_HPP
#include <memory>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <typename T>
std::shared_ptr<T> make_shared_array(size_t size)
{
return std::shared_ptr<T>(new T[size], std::default_delete<T[]>());
return std::shared_ptr<T>(new T[size], std::default_delete<T[]>()); // NOLINT
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPH_MANAGE_PTR_HPP
#define MIGRAPH_GUARD_MIGRAPH_MANAGE_PTR_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHX_MANAGE_PTR_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_MANAGE_PTR_HPP
#include <memory>
#include <type_traits>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class F, F f> // NOLINT
struct manage_deleter
......@@ -51,10 +51,10 @@ shared<T> share(T p)
return shared<T>{std::move(p)};
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#define MIGRAPH_MANAGE_PTR(T, F) \
migraph::manage_ptr<std::remove_pointer_t<T>, decltype(&F), &F> // NOLINT
#define MIGRAPHX_MANAGE_PTR(T, F) \
migraphx::manage_ptr<std::remove_pointer_t<T>, decltype(&F), &F> // NOLINT
#endif
#ifndef MIGRAPH_GUARD_RTGLIB_MATCHER_HPP
#define MIGRAPH_GUARD_RTGLIB_MATCHER_HPP
#include <migraph/functional.hpp>
#include <migraph/ranges.hpp>
#include <migraph/instruction.hpp>
#include <migraph/program.hpp>
#include <migraph/iterator_for.hpp>
#include <migraph/config.hpp>
#ifndef MIGRAPHX_GUARD_RTGLIB_MATCHER_HPP
#define MIGRAPHX_GUARD_RTGLIB_MATCHER_HPP
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/config.hpp>
#include <unordered_map>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace match {
......@@ -169,22 +169,22 @@ basic_matcher<predicate_matcher<P>> make_basic_pred_matcher(P p)
}
/// This macro takes care of the boilerplate for defining a matcher
#define MIGRAPH_BASIC_MATCHER(name, ...) \
struct name##_m \
{ \
instruction_ref match(__VA_ARGS__) const; \
}; \
const constexpr auto name = migraph::match::basic_matcher<name##_m>{{}}; \
#define MIGRAPHX_BASIC_MATCHER(name, ...) \
struct name##_m \
{ \
instruction_ref match(__VA_ARGS__) const; \
}; \
const constexpr auto name = migraphx::match::basic_matcher<name##_m>{{}}; \
inline instruction_ref name##_m::match(__VA_ARGS__) const
/// This macro takes care of the boilerplate for defining a predicate matcher
#define MIGRAPH_PRED_MATCHER(name, ...) \
struct name##_m \
{ \
bool operator()(__VA_ARGS__) const; \
}; \
const constexpr auto name = \
migraph::match::basic_matcher<migraph::match::predicate_matcher<name##_m>>{{}}; \
#define MIGRAPHX_PRED_MATCHER(name, ...) \
struct name##_m \
{ \
bool operator()(__VA_ARGS__) const; \
}; \
const constexpr auto name = \
migraphx::match::basic_matcher<migraphx::match::predicate_matcher<name##_m>>{{}}; \
inline bool name##_m::operator()(__VA_ARGS__) const
struct matcher_result
......@@ -214,7 +214,6 @@ void find_matches(program& p, Ms&&... ms)
bool match = false;
each_args(
[&](auto&& m) {
// cppcheck-suppress knownConditionTrueFalse
if(match)
return;
auto r = match_instruction(p, ins, m.matcher());
......@@ -266,22 +265,22 @@ auto any_of(Ts... ms)
});
}
MIGRAPH_PRED_MATCHER(any, instruction_ref) { return true; }
MIGRAPH_PRED_MATCHER(none, instruction_ref) { return false; }
MIGRAPH_PRED_MATCHER(standard_shape, instruction_ref ins) { return ins->get_shape().standard(); }
MIGRAPH_PRED_MATCHER(broadcast_shape, instruction_ref ins)
MIGRAPHX_PRED_MATCHER(any, instruction_ref) { return true; }
MIGRAPHX_PRED_MATCHER(none, instruction_ref) { return false; }
MIGRAPHX_PRED_MATCHER(standard_shape, instruction_ref ins) { return ins->get_shape().standard(); }
MIGRAPHX_PRED_MATCHER(broadcast_shape, instruction_ref ins)
{
return ins->get_shape().broadcasted();
}
MIGRAPH_BASIC_MATCHER(output, matcher_context& ctx, instruction_ref ins)
MIGRAPHX_BASIC_MATCHER(output, matcher_context& ctx, instruction_ref ins)
{
if(ins->outputs().size() == 1)
return ins->outputs().front();
return ctx.not_found();
}
MIGRAPH_BASIC_MATCHER(used_once, matcher_context& ctx, instruction_ref ins)
MIGRAPHX_BASIC_MATCHER(used_once, matcher_context& ctx, instruction_ref ins)
{
if(ins->outputs().size() == 1)
return ins;
......@@ -340,7 +339,7 @@ inline auto either_arg(std::size_t i, std::size_t j)
}
} // namespace match
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_RTGLIB_MEMORY_COLORING_HPP
#define MIGRAPH_GUARD_RTGLIB_MEMORY_COLORING_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_HPP
#define MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_HPP
#include <string>
#include <migraph/instruction_ref.hpp>
#include <migraph/config.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct program;
/**
......@@ -20,7 +20,7 @@ struct memory_coloring
void apply(program& p) const;
};
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_ONNX_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_ONNX_HPP
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct unknown
{
std::string op;
std::string name() const { return "unknown:" + op; }
shape compute_shape(std::vector<shape> input) const
{
if(input.empty())
return {};
else
return input.front();
}
friend std::ostream& operator<<(std::ostream& os, const unknown& x)
{
os << x.name();
return os;
}
};
/// Create a program from an onnx file
program parse_onnx(const std::string& name);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_OPERAND_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_OPERAND_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_OPERAND_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_OPERAND_HPP
#include <cassert>
#include <string>
......@@ -7,16 +7,16 @@
#include <memory>
#include <type_traits>
#include <utility>
#include <migraph/shape.hpp>
#include <migraph/reflect.hpp>
#include <migraph/streamutils.hpp>
#include <migraph/argument.hpp>
#include <migraph/context.hpp>
#include <migraph/auto_any_cast.hpp>
#include <migraph/config.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/auto_any_cast.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct context;
#ifdef DOXYGEN
......@@ -26,6 +26,8 @@ struct operation
{
/// A unique name identifying the operation
std::string name() const;
/// An optional method that can be used to finalize the operator before running
void finalize(context& ctx);
/// This is used to compute the resulting shape from an operation. If an
/// operation cannot be run with input shapes, then it should throw an
/// exception.
......@@ -53,6 +55,11 @@ struct operation
friend std::ostream& operator<<(std::ostream& os, const operation& op);
};
/// Returns true if operation does not require a context to run compute
bool is_context_free(const operation& x);
/// Returns true if the operation has a finalize method
bool has_finalize(const operation& x);
#else
namespace operation_stream {
......@@ -89,7 +96,7 @@ auto operator==(const T& x, const U& y) -> decltype(x.name() == y.name())
} // namespace operation_equal
template <class T>
auto compute_op(rank<1>,
auto compute_op(rank<2>,
const T& x,
context& ctx,
const shape& output_shape,
......@@ -99,18 +106,72 @@ auto compute_op(rank<1>,
return x.compute(auto_any_cast(ctx), output_shape, input);
}
template <class T>
auto compute_op(
rank<1>, const T& x, context&, const shape& output_shape, const std::vector<argument>& input)
-> decltype(x.compute(output_shape, input))
{
return x.compute(output_shape, input);
}
template <class T>
argument compute_op(rank<0>, const T& x, context&, const shape&, const std::vector<argument>&)
{
std::string name = x.name();
MIGRAPH_THROW("Not computable: " + name);
MIGRAPHX_THROW("Not computable: " + name);
}
template <class T>
argument
compute_op(const T& x, context& ctx, const shape& output_shape, const std::vector<argument>& input)
{
return compute_op(rank<1>{}, x, ctx, output_shape, input);
return compute_op(rank<2>{}, x, ctx, output_shape, input);
}
template <class T>
auto compute_op(rank<2>, const T& x, const shape& output_shape, const std::vector<argument>& input)
-> decltype(x.compute(output_shape, input))
{
return x.compute(output_shape, input);
}
template <class T>
auto compute_op(rank<1>, const T& x, const shape& output_shape, const std::vector<argument>& input)
-> decltype(x.compute(auto_any_cast(std::declval<context&>()), output_shape, input))
{
std::string name = x.name();
MIGRAPHX_THROW("Not computable without a context: " + name);
}
template <class T>
argument compute_op(rank<0>, const T& x, const shape&, const std::vector<argument>&)
{
std::string name = x.name();
MIGRAPHX_THROW("Not computable: " + name);
}
template <class T>
argument compute_op(const T& x, const shape& output_shape, const std::vector<argument>& input)
{
return compute_op(rank<2>{}, x, output_shape, input);
}
template <class T>
auto is_context_free_op(rank<1>,
const T& x,
const shape& output_shape,
const std::vector<argument>& input)
-> decltype(x.compute(output_shape, input), std::true_type{});
template <class T>
auto is_context_free_op(rank<0>, const T&, const shape&, const std::vector<argument>&)
-> std::false_type;
template <class T>
auto is_context_free_op(const T& x) -> decltype(is_context_free_op(
rank<1>{}, x, std::declval<const shape&>(), std::declval<std::vector<argument>>()))
{
return {};
}
template <class T>
......@@ -132,15 +193,57 @@ int output_alias_op(const T& x, const std::vector<shape>& shapes)
return output_alias_op(rank<1>{}, x, shapes);
}
template <class T>
auto finalize_op(
rank<1>, T& x, context& ctx, const shape& output_shape, const std::vector<shape>& input)
-> decltype(x.finalize(auto_any_cast(ctx), output_shape, input), void())
{
x.finalize(auto_any_cast(ctx), output_shape, input);
}
template <class T>
void finalize_op(rank<0>, T&, context&, const shape&, const std::vector<shape>&)
{
}
template <class T>
void finalize_op(T& x, context& ctx, const shape& output_shape, const std::vector<shape>& input)
{
finalize_op(rank<1>{}, x, ctx, output_shape, input);
}
template <class T>
auto has_finalize_op(
rank<1>, T& x, context& ctx, const shape& output_shape, const std::vector<shape>& input)
-> decltype(x.finalize(auto_any_cast(ctx), output_shape, input), std::true_type{});
template <class T>
auto has_finalize_op(rank<0>, T&, context&, const shape&, const std::vector<shape>&)
-> std::false_type;
template <class T>
auto has_finalize_op(const T&) -> decltype(has_finalize_op(rank<1>{},
std::declval<T&>(),
std::declval<context&>(),
std::declval<const shape&>(),
std::declval<std::vector<shape>>()))
{
return {};
}
/*
* Type-erased interface for:
*
* struct operation
* {
* std::string name() const;
* bool is_context_free() const;
* bool has_finalize() const;
* int output_alias(const std::vector<shape>& input) const;
* void finalize(context& ctx,const shape& output,const std::vector<shape>& input) ;
* shape compute_shape(const std::vector<shape>& input) const;
* argument compute(context& ctx,const shape& output,const std::vector<argument>& input) const;
* argument compute(const shape& output,const std::vector<argument>& input) const;
* friend std::ostream & operator<<(std::ostream & os,const operation & op) ;
* friend bool operator==(const operation & x,const operation & y) ;
* };
......@@ -210,12 +313,30 @@ struct operation
return (*this).private_detail_te_get_handle().name();
}
bool is_context_free() const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().is_context_free();
}
bool has_finalize() const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().has_finalize();
}
int output_alias(const std::vector<shape>& input) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().output_alias(input);
}
void finalize(context& ctx, const shape& output, const std::vector<shape>& input)
{
assert((*this).private_detail_te_handle_mem_var);
(*this).private_detail_te_get_handle().finalize(ctx, output, input);
}
shape compute_shape(const std::vector<shape>& input) const
{
assert((*this).private_detail_te_handle_mem_var);
......@@ -228,6 +349,12 @@ struct operation
return (*this).private_detail_te_get_handle().compute(ctx, output, input);
}
argument compute(const shape& output, const std::vector<argument>& input) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().compute(output, input);
}
friend std::ostream& operator<<(std::ostream& os, const operation& op)
{
assert(op.private_detail_te_handle_mem_var);
......@@ -240,6 +367,12 @@ struct operation
return x.private_detail_te_get_handle().operator==(y);
}
friend bool is_shared(const operation& private_detail_x, const operation& private_detail_y)
{
return private_detail_x.private_detail_te_handle_mem_var ==
private_detail_y.private_detail_te_handle_mem_var;
}
private:
struct private_detail_te_handle_base_type
{
......@@ -247,13 +380,18 @@ struct operation
virtual std::shared_ptr<private_detail_te_handle_base_type> clone() const = 0;
virtual const std::type_info& type() const = 0;
virtual std::string name() const = 0;
virtual int output_alias(const std::vector<shape>& input) const = 0;
virtual shape compute_shape(const std::vector<shape>& input) const = 0;
virtual std::string name() const = 0;
virtual bool is_context_free() const = 0;
virtual bool has_finalize() const = 0;
virtual int output_alias(const std::vector<shape>& input) const = 0;
virtual void
finalize(context& ctx, const shape& output, const std::vector<shape>& input) = 0;
virtual shape compute_shape(const std::vector<shape>& input) const = 0;
virtual argument
compute(context& ctx, const shape& output, const std::vector<argument>& input) const = 0;
virtual std::ostream& operator_shift_left(std::ostream& os) const = 0;
virtual bool operator==(const operation& y) const = 0;
compute(context& ctx, const shape& output, const std::vector<argument>& input) const = 0;
virtual argument compute(const shape& output, const std::vector<argument>& input) const = 0;
virtual std::ostream& operator_shift_left(std::ostream& os) const = 0;
virtual bool operator==(const operation& y) const = 0;
};
template <typename PrivateDetailTypeErasedT>
......@@ -286,12 +424,26 @@ struct operation
std::string name() const override { return private_detail_te_value.name(); }
bool is_context_free() const override
{
return is_context_free_op(private_detail_te_value);
}
bool has_finalize() const override { return has_finalize_op(private_detail_te_value); }
int output_alias(const std::vector<shape>& input) const override
{
return output_alias_op(private_detail_te_value, input);
}
void finalize(context& ctx, const shape& output, const std::vector<shape>& input) override
{
finalize_op(private_detail_te_value, ctx, output, input);
}
shape compute_shape(const std::vector<shape>& input) const override
{
......@@ -306,15 +458,21 @@ struct operation
return compute_op(private_detail_te_value, ctx, output, input);
}
argument compute(const shape& output, const std::vector<argument>& input) const override
{
return compute_op(private_detail_te_value, output, input);
}
std::ostream& operator_shift_left(std::ostream& os) const override
{
using migraph::operation_stream::operator<<;
using migraphx::operation_stream::operator<<;
return os << private_detail_te_value;
}
bool operator==(const operation& y) const override
{
using migraph::operation_equal::operator==;
using migraphx::operation_equal::operator==;
return private_detail_te_value == y;
}
......@@ -385,9 +543,25 @@ inline const ValueType& any_cast(const operation& x)
inline bool operator!=(const operation& x, const operation& y) { return !(x == y); }
inline bool is_context_free(const operation& op) { return op.is_context_free(); }
template <class T>
bool is_context_free(const T& x)
{
return is_context_free_op(x);
}
inline bool has_finalize(const operation& op) { return op.has_finalize(); }
template <class T>
bool has_finalize(const T& x)
{
return has_finalize_op(x);
}
#endif
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_OPERATORS_HPP
#define MIGRAPH_GUARD_OPERATORS_HPP
#ifndef MIGRAPHX_GUARD_OPERATORS_HPP
#define MIGRAPHX_GUARD_OPERATORS_HPP
#include <array>
#include <migraph/operation.hpp>
#include <migraph/check_shapes.hpp>
#include <migraph/stringutils.hpp>
#include <migraph/streamutils.hpp>
#include <migraph/config.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
enum padding_mode_t
{
default_, // NOLINT
same,
valid
};
struct not_computable
{
argument compute(context&, const shape&, const std::vector<argument>&) const
argument compute(const shape&, const std::vector<argument>&) const
{
MIGRAPH_THROW("not computable");
MIGRAPHX_THROW("not computable");
}
};
......@@ -51,18 +60,38 @@ struct batch_norm_inference
}
};
struct lrn
{
float alpha = 0.0001;
float beta = 0.75;
float bias = 1.0;
int size = 1;
std::string name() const { return "lrn"; }
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.alpha, "alpha"),
f(self.beta, "beta"),
f(self.bias, "bias"),
f(self.size, "size"));
}
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
return inputs.front();
}
};
struct convolution
{
std::array<std::size_t, 2> padding = {{0, 0}};
std::array<std::size_t, 2> stride = {{1, 1}};
std::array<std::size_t, 2> dilation = {{1, 1}};
enum padding_mode_t
{
default_, // NOLINT
same,
valid
};
padding_mode_t padding_mode = default_;
int group = 1;
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -70,7 +99,8 @@ struct convolution
return pack(f(self.padding, "padding"),
f(self.stride, "stride"),
f(self.dilation, "dilation"),
f(self.padding_mode, "padding_mode"));
f(self.padding_mode, "padding_mode"),
f(self.group, "group"));
}
std::string name() const { return "convolution"; }
......@@ -124,7 +154,7 @@ struct convolution
}
else
{
MIGRAPH_THROW("Invalid padding mode");
MIGRAPHX_THROW("Invalid padding mode");
}
}
};
......@@ -134,12 +164,7 @@ struct im2col
std::array<std::size_t, 2> padding = {{0, 0}};
std::array<std::size_t, 2> stride = {{1, 1}};
std::array<std::size_t, 2> dilation = {{1, 1}};
enum padding_mode_t
{
default_, // NOLINT
same,
valid
};
padding_mode_t padding_mode = default_;
template <class Self, class F>
......@@ -163,7 +188,7 @@ struct im2col
auto kernel_width = weights.lens()[3];
check_shapes{inputs, *this}.has(2);
if(batch_size != 1)
MIGRAPH_THROW("im2col only support batch_size 1");
MIGRAPHX_THROW("im2col only support batch_size 1");
auto output_height = std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[2] - (1 + dilation[0] * (kernel_height - 1)) + 2 * padding[0]) /
......@@ -185,12 +210,14 @@ struct pooling
std::array<std::size_t, 2> padding = {{0, 0}};
std::array<std::size_t, 2> stride = {{1, 1}};
std::array<std::size_t, 2> lengths = {{1, 1}};
padding_mode_t padding_mode = default_;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.mode, "mode"),
f(self.padding, "padding"),
f(self.padding, "padding_mode"),
f(self.stride, "stride"),
f(self.lengths, "lengths"));
}
......@@ -207,7 +234,10 @@ struct pooling
assert(lengths[0] <= (input.lens()[2] + 2 * padding[0]));
assert(lengths[1] <= (input.lens()[3] + 2 * padding[1]));
return {t,
if(padding_mode == default_)
{
return {
t,
{
input.lens()[0],
input.lens()[1],
......@@ -222,6 +252,39 @@ struct pooling
static_cast<float>(stride[1]))) +
1)),
}};
}
else if(padding_mode == same)
{
return {t,
{input.lens()[0],
input.lens()[1],
static_cast<std::size_t>(
std::ceil(static_cast<double>(input.lens()[2]) / stride[0])),
static_cast<std::size_t>(
std::ceil(static_cast<double>(input.lens()[3]) / stride[1]))}};
}
else if(padding_mode == valid)
{
return {t,
{
input.lens()[0],
input.lens()[1],
std::size_t(std::max<std::ptrdiff_t>(
1,
std::ptrdiff_t(std::floor((input.lens()[2] - lengths[0]) /
static_cast<float>(stride[0]))) +
1)),
std::size_t(std::max<std::ptrdiff_t>(
1,
std::ptrdiff_t(std::floor((input.lens()[3] - lengths[1]) /
static_cast<float>(stride[1]))) +
1)),
}};
}
else
{
MIGRAPHX_THROW("Invalid padding mode");
}
}
};
......@@ -234,10 +297,28 @@ struct leaky_relu
check_shapes{inputs, *this}.has(1);
return inputs.front();
}
friend std::ostream& operator<<(std::ostream& os, const leaky_relu& op)
template <class Self, class F>
static auto reflect(Self& self, F f)
{
os << op.name() << ":" << op.alpha;
return os;
return pack(f(self.alpha, "alpha"));
}
};
struct elu
{
std::string name() const { return "elu"; }
float alpha;
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
return inputs.front();
}
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.alpha, "alpha"));
}
};
......@@ -261,30 +342,36 @@ struct transpose
auto t = input.type();
if(dims.size() != input_lens.size())
{
MIGRAPH_THROW("Permutation has wrong number of axes");
MIGRAPHX_THROW("Permutation has wrong number of axes");
}
std::vector<int64_t> axes(dims.size());
std::iota(axes.begin(), axes.end(), 0);
if(!std::is_permutation(axes.begin(), axes.end(), dims.begin()))
{
MIGRAPH_THROW("Invalid permutation");
MIGRAPHX_THROW("Invalid permutation");
}
std::vector<size_t> output_lens(input_lens.size());
std::vector<size_t> output_strides(input_lens.size());
for(int i = 0; i < output_lens.size(); i++)
for(std::size_t i = 0; i < output_lens.size(); i++)
{
output_lens[i] = input_lens[dims[i]];
output_strides[i] = input_strides[dims[i]];
}
return {t, output_lens, output_strides};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
/// The contiguous operator takes a non-standard input tensor and returns
/// the same tensor but in standard form. For example, if input tensor A which has lens = (4,5)
/// is first transposed, i.e. lens = (5,4), this tensor's data layout remained the same
/// during the transpose operation; only it's shape lengths and strides were changed.
/// This leaves the tensor in a non-standard form. The contiguous operator copies the
/// underlying data such that resulting tensor is returned to a standard form.
struct contiguous
{
std::string name() const { return "contiguous"; }
......@@ -295,6 +382,17 @@ struct contiguous
auto t = inputs.at(0).type();
return {t, lens};
}
argument compute(const shape& output_shape, std::vector<argument> args) const
{
assert(output_shape.standard());
argument result{output_shape};
visit_all(result, args[0])([&](auto output, auto input) {
shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
});
});
return result;
}
};
struct concat
......@@ -302,7 +400,7 @@ struct concat
std::size_t axis = 0;
std::string name() const { return "concat"; }
std::vector<std::size_t> compute_offsets(const shape& output_shape,
const std::vector<argument> args) const
const std::vector<argument>& args) const
{
std::vector<std::size_t> offsets;
std::vector<std::size_t> offset(args[0].get_shape().lens().size(), 0);
......@@ -318,7 +416,7 @@ struct concat
{
if(inputs.empty())
{
MIGRAPH_THROW("Number of input tensors should exceed 0");
MIGRAPHX_THROW("Number of input tensors should exceed 0");
}
const auto& first_shape_lens = inputs.front().lens();
......@@ -331,7 +429,7 @@ struct concat
return s.lens()[l] == first_shape_lens[l];
}))
{
MIGRAPH_THROW("Non-axis dimensions should match");
MIGRAPHX_THROW("Non-axis dimensions should match");
}
}
}
......@@ -346,7 +444,27 @@ struct concat
new_lens[axis] = new_dim_axis;
return {type, new_lens};
}
int output_alias(const std::vector<shape>&) const { return 0; }
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
std::vector<std::size_t> coffsets = compute_offsets(output_shape, args);
for(std::size_t l = 0; l < args.size(); l++)
{
auto argl = args[l];
std::size_t nelements = argl.get_shape().elements();
visit_all(result, argl)([&](auto output, auto input) {
auto slice_shape =
shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
auto slice = make_view(slice_shape, output.data() + coffsets[l]);
// cppcheck-suppress useStlAlgorithm
for(std::size_t i = 0; i < nelements; i++)
{
slice[i] = input[i];
}
});
}
return result;
}
};
struct slice
......@@ -400,18 +518,9 @@ struct slice
auto t = input_shape.type();
const auto& old_lens = input_shape.lens();
const auto& old_strides = input_shape.strides();
// std::vector<int64_t> t_axes(old_lens.size());
// if(axes.size() == 0)
// {
// std::iota(t_axes.begin(), t_axes.end(), 0);
// }
// else
// {
// std::copy(axes.begin(), axes.end(), t_axes.begin());
// }
if(starts.size() != axes.size() || axes.size() != ends.size())
{
MIGRAPH_THROW("inconsistent sizes");
MIGRAPHX_THROW("inconsistent sizes");
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
......@@ -422,7 +531,7 @@ struct slice
}
return shape{t, new_lens, old_strides};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * output_shape.type_size();
......@@ -450,7 +559,7 @@ struct squeeze
if(std::any_of(
axes.begin(), axes.end(), [&](auto axis) { return input_shape.lens()[axis] != 1; }))
{
MIGRAPH_THROW("squeeze axis dimension should be equal to 1");
MIGRAPHX_THROW("squeeze axis dimension should be equal to 1");
}
std::vector<std::size_t> new_lens;
if(axes.empty())
......@@ -472,7 +581,7 @@ struct squeeze
}
return shape{type, new_lens};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
......@@ -511,7 +620,7 @@ struct unsqueeze
}
return shape{type, new_lens};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
......@@ -536,16 +645,21 @@ struct reshape
std::vector<std::size_t> rdims(dims.begin(), dims.end());
auto n_neg_dims = std::count(dims.begin(), dims.end(), -1);
if(n_neg_dims > 1)
MIGRAPH_THROW("Dimensions for reshape can only have one -1 dim");
MIGRAPHX_THROW("Dimensions for reshape can only have one -1 dim");
for(std::size_t i = 0; i < dims.size(); i++)
{
if(dims[i] == 0)
rdims[i] = idims[i];
// since rdims using size_t type, -1 is the max value
// is size_t that cause later compuation incorrect
if(dims[i] == -1)
rdims[i] = 1;
}
if(n_neg_dims > 0)
{
size_t missing_dim =
-inputs.front().elements() /
inputs.front().elements() /
std::accumulate(rdims.begin(), rdims.end(), 1, std::multiplies<int64_t>());
for(std::size_t i = 0; i < rdims.size(); i++)
{
......@@ -553,23 +667,140 @@ struct reshape
rdims[i] = missing_dim;
}
}
if(dims.back() == -1)
shape s{inputs.front().type(), rdims};
if(s.elements() != inputs.front().elements())
MIGRAPHX_THROW("Wrong number of elements for reshape");
return s;
}
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
struct pad
{
std::vector<int64_t> pads;
float value = 0.0f;
enum pad_op_mode_t
{
constant_pad,
reflect_pad,
edge_pad
};
pad_op_mode_t mode = constant_pad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.mode, "mode"), f(self.pads, "pads"), f(self.value, "value"));
}
std::string name() const { return "pad"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto&& idims = inputs.front().lens();
std::vector<std::size_t> rdims(idims.begin(), idims.end());
std::size_t num_dims = rdims.size();
for(std::size_t i = 0; i < num_dims; i++)
{
rdims.pop_back();
std::copy(idims.begin() + rdims.size(), idims.end(), std::back_inserter(rdims));
rdims[i] += pads[i] + pads[i + num_dims];
}
shape s{inputs.front().type(), rdims};
if(s.elements() != inputs.front().elements())
MIGRAPH_THROW("Wrong number of elements for reshape");
return s;
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
};
struct as_shape
{
shape s;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.s, "shape"));
}
std::string name() const { return "as_shape"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(1).standard();
assert(inputs.front().elements() == s.elements());
return s;
}
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
struct gather
{
int axis = 0;
std::string name() const { return "gather"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(2);
auto lens = inputs[0].lens();
int n_dim = static_cast<int>(lens.size());
if(axis >= n_dim || axis < -n_dim)
{
MIGRAPHX_THROW("Gather: axis is out of range.");
}
// negative axis means counting dimensions from back
int axis_index = (axis < 0) ? (n_dim + axis) : axis;
auto type = inputs[0].type();
lens[axis_index] = inputs[1].elements();
return {type, lens};
}
template <class T>
void compute_index(const T& out_idx,
const int axis_index,
const std::vector<std::size_t>& vec_indices,
const std::size_t max_dim,
T& in_idx) const
{
in_idx = out_idx;
std::size_t idx = vec_indices.at(out_idx[axis_index]);
if(idx >= max_dim)
{
MIGRAPHX_THROW("Gather: indices are out of range in input tensor");
}
in_idx[axis_index] = idx;
}
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
// negative axis means counting dimensions from back
int axis_index = (axis < 0) ? (output_shape.lens().size() + axis) : axis;
// max dimension in axis
std::size_t max_dim = args[0].get_shape().lens()[axis_index];
std::vector<std::size_t> vec_indices;
args[1].visit([&](auto indices) { vec_indices.assign(indices.begin(), indices.end()); });
visit_all(result, args[0])([&](auto output, auto input) {
std::vector<std::size_t> in_idx;
shape_for_each(output.get_shape(), [&](const auto& idx) {
this->compute_index(idx, axis_index, vec_indices, max_dim, in_idx);
output(idx.begin(), idx.end()) = input(in_idx.begin(), in_idx.end());
});
});
return result;
}
};
struct dot
{
float alpha = 1.0;
......@@ -590,8 +821,8 @@ struct dot
auto t = a.type();
if(a.lens()[1] != b.lens()[0])
MIGRAPH_THROW("Inner dimensions do not match: {" + to_string_range(a.lens()) + "} x {" +
to_string_range(b.lens()) + "}");
MIGRAPHX_THROW("Inner dimensions do not match: {" + to_string_range(a.lens()) +
"} x {" + to_string_range(b.lens()) + "}");
return {t, {a.lens()[0], b.lens()[1]}};
}
};
......@@ -609,7 +840,7 @@ struct identity
{
std::string name() const { return "identity"; }
shape compute_shape(std::vector<shape> inputs) const { return inputs.at(0); }
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.at(0).data)};
}
......@@ -626,6 +857,11 @@ struct exp : unary
std::string name() const { return "exp"; }
};
struct log : unary
{
std::string name() const { return "log"; }
};
struct sin : unary
{
std::string name() const { return "sin"; }
......@@ -656,6 +892,16 @@ struct atan : unary
std::string name() const { return "atan"; }
};
struct sinh : unary
{
std::string name() const { return "sinh"; }
};
struct cosh : unary
{
std::string name() const { return "cosh"; }
};
struct tanh : unary
{
std::string name() const { return "tanh"; }
......@@ -704,7 +950,7 @@ struct flatten
if(axis > lens.size())
{
MIGRAPH_THROW("axis for flatten must be less than tensor rank");
MIGRAPHX_THROW("axis for flatten must be less than tensor rank");
}
auto x =
std::accumulate(lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<>{});
......@@ -712,12 +958,21 @@ struct flatten
std::accumulate(lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<>{});
return {inputs.at(0).type(), {x, y}};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.front().data)};
}
int output_alias(const std::vector<shape>&) const { return 0; }
};
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
struct broadcast
{
uint64_t axis = 0;
......@@ -742,7 +997,7 @@ struct broadcast
}))
{
if(axis != 0)
MIGRAPH_THROW("when broadcasting tensor of size 1, axis should be 0");
MIGRAPHX_THROW("when broadcasting tensor of size 1, axis should be 0");
return {t, broadcast_shape.lens(), std::move(bcast_strides)};
}
else
......@@ -750,12 +1005,12 @@ struct broadcast
assert(broadcast_shape.lens().size() - axis >= input.lens().size());
if(!std::equal(
input.lens().begin(), input.lens().end(), broadcast_shape.lens().begin() + axis))
MIGRAPH_THROW("when broadcasting success sizes must match");
MIGRAPHX_THROW("when broadcasting success sizes must match");
std::copy(input.strides().begin(), input.strides().end(), bcast_strides.begin() + axis);
return {t, broadcast_shape.lens(), std::move(bcast_strides)};
}
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.at(0).data)};
}
......@@ -781,10 +1036,10 @@ struct multibroadcast
auto input = inputs.at(0);
if(input.lens().empty())
MIGRAPH_THROW("inputs dimensions should be > 0");
MIGRAPHX_THROW("inputs dimensions should be > 0");
if(input.lens().size() > output_lens.size())
MIGRAPH_THROW("inputs dimensions should <= output size");
MIGRAPHX_THROW("inputs dimensions should <= output size");
std::vector<size_t> bcast_strides(output_lens.size(), 0);
auto offset = output_lens.size() - input.lens().size();
......@@ -797,7 +1052,7 @@ struct multibroadcast
}
return {t, output_lens, bcast_strides};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.at(0).data)};
}
......@@ -813,13 +1068,12 @@ struct scalar
shape compute_shape(std::vector<shape> inputs) const
{
assert(check_shapes{inputs}.has(1).only_dims(1).size() == 1);
auto t = inputs.at(0).type();
auto input = inputs.at(0);
auto t = inputs.at(0).type();
std::vector<std::size_t> strides(scalar_bcast.lens().size(), 0);
return {t, scalar_bcast.lens(), strides};
}
argument compute(context&, shape output_shape, std::vector<argument> args) const
argument compute(shape output_shape, std::vector<argument> args) const
{
return {std::move(output_shape), std::move(args.at(0).data)};
}
......@@ -857,6 +1111,16 @@ struct div : binary
std::string name() const { return "div"; }
};
struct max : binary
{
std::string name() const { return "max"; }
};
struct min : binary
{
std::string name() const { return "min"; }
};
struct load
{
shape s;
......@@ -874,7 +1138,7 @@ struct load
check_shapes{inputs}.has(1);
return s;
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
argument compute(const shape&, const std::vector<argument>& args) const
{
return {s, args[0].data() + offset};
}
......@@ -897,14 +1161,118 @@ struct outline
check_shapes{inputs, *this}.has(0);
return s;
}
argument compute(context&, const shape&, const std::vector<argument>&) const
argument compute(const shape&, const std::vector<argument>&) const { return {s, nullptr}; }
};
// indicate rnn computation direction
enum class rnn_direction
{
forward,
reverse,
bidirectional,
};
struct rnn
{
std::size_t hidden_size = 1;
std::vector<operation> actv_funcs{tanh{}, tanh{}};
rnn_direction direction = rnn_direction::forward;
float clip = 0.0f;
std::string name() const { return "rnn"; }
shape compute_shape(std::vector<shape> inputs) const
{
return {s, nullptr};
auto in_dims = inputs[0].lens();
auto hidden_dims = inputs[2].lens();
if(hidden_size != hidden_dims[2])
{
MIGRAPHX_THROW("RNN: hidden size mismatch in attribute and input");
}
std::size_t num_directions = 1;
if(direction == rnn_direction::bidirectional)
{
num_directions = 2;
}
if(num_directions != hidden_dims[0])
{
MIGRAPHX_THROW("RNN: num_direction mismatch in attribute and input");
}
std::vector<std::size_t> out_dims(in_dims);
out_dims.insert(out_dims.begin() + 1, num_directions);
out_dims.back() = hidden_size;
return {inputs[0].type(), out_dims};
}
};
struct rnn_last_output
{
std::string name() const { return "rnn_last_output"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto dims = inputs[0].lens();
// remove the first dimension, remaing are output shape
dims.erase(dims.begin());
return {inputs[0].type(), dims};
}
};
struct gru
{
std::size_t hidden_size = 1;
std::vector<operation> actv_funcs{sigmoid{}, tanh{}};
rnn_direction direction = rnn_direction::forward;
float clip = 0.0f;
int linear_before_reset = 0;
std::string name() const { return "gru"; }
shape compute_shape(std::vector<shape> inputs) const
{
auto in_dims = inputs[0].lens();
auto hidden_dims = inputs[2].lens();
if(hidden_size != hidden_dims[2])
{
MIGRAPHX_THROW("GRU: hidden size mismatch in attribute and input");
}
std::size_t num_directions = 1;
if(direction == rnn_direction::bidirectional)
{
num_directions = 2;
}
if(num_directions != hidden_dims[0])
{
MIGRAPHX_THROW("GRU: num_direction does not match the direction attribute");
}
std::vector<std::size_t> out_dims(in_dims);
out_dims.insert(out_dims.begin() + 1, num_directions);
out_dims.back() = hidden_size;
return {inputs[0].type(), out_dims};
}
};
struct undefined
{
std::string name() const { return "undefined"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(0);
return {};
}
argument compute(const shape&, const std::vector<argument>&) const { return {{}, nullptr}; }
};
} // namespace op
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_PAR_DFOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_PAR_DFOR_HPP
#include <migraphx/par_for.hpp>
#include <migraphx/functional.hpp>
#include <array>
#include <numeric>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class... Ts>
auto par_dfor(Ts... xs)
{
return [=](auto f) {
using array_type = std::array<std::size_t, sizeof...(Ts)>;
array_type lens = {{static_cast<std::size_t>(xs)...}};
auto n = std::accumulate(lens.begin(), lens.end(), 1, std::multiplies<std::size_t>{});
const std::size_t min_grain = 8;
if(n > 2 * min_grain)
{
array_type strides;
strides.fill(1);
std::partial_sum(lens.rbegin(),
lens.rend() - 1,
strides.rbegin() + 1,
std::multiplies<std::size_t>());
auto size =
std::accumulate(lens.begin(), lens.end(), 1, std::multiplies<std::size_t>());
par_for(size, min_grain, [&](std::size_t i) {
array_type indices;
std::transform(strides.begin(),
strides.end(),
lens.begin(),
indices.begin(),
[&](size_t stride, size_t len) { return (i / stride) % len; });
migraphx::unpack(f, indices);
});
}
else
{
dfor(xs...)(f);
}
};
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP
#include <thread>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cassert>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct joinable_thread : std::thread
{
template <class... Xs>
joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...) // NOLINT
{
}
joinable_thread& operator=(joinable_thread&& other) = default;
joinable_thread(joinable_thread&& other) = default;
~joinable_thread()
{
if(this->joinable())
this->join();
}
};
template <class F>
void par_for_impl(std::size_t n, std::size_t threadsize, F f)
{
if(threadsize <= 1)
{
for(std::size_t i = 0; i < n; i++)
f(i);
}
else
{
std::vector<joinable_thread> threads(threadsize);
// Using const here causes gcc 5 to ICE
#if(!defined(__GNUC__) || __GNUC__ != 5)
const
#endif
std::size_t grainsize = std::ceil(static_cast<double>(n) / threads.size());
std::size_t work = 0;
std::generate(threads.begin(), threads.end(), [=, &work] {
auto result = joinable_thread([=] {
std::size_t start = work;
std::size_t last = std::min(n, work + grainsize);
for(std::size_t i = start; i < last; i++)
{
f(i);
}
});
work += grainsize;
return result;
});
assert(work >= n);
}
}
template <class F>
void par_for(std::size_t n, std::size_t min_grain, F f)
{
const auto threadsize =
std::min<std::size_t>(std::thread::hardware_concurrency(), n / min_grain);
par_for_impl(n, threadsize, f);
}
template <class F>
void par_for(std::size_t n, F f)
{
const int min_grain = 8;
par_for(n, min_grain, f);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_PASS_HPP
#define MIGRAPH_GUARD_PASS_HPP
#ifndef MIGRAPHX_GUARD_PASS_HPP
#define MIGRAPHX_GUARD_PASS_HPP
#include <cassert>
#include <string>
......@@ -7,10 +7,10 @@
#include <memory>
#include <type_traits>
#include <utility>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct program;
......@@ -105,7 +105,13 @@ struct pass
void apply(program& p) const
{
assert((*this).private_detail_te_handle_mem_var);
return (*this).private_detail_te_get_handle().apply(p);
(*this).private_detail_te_get_handle().apply(p);
}
friend bool is_shared(const pass& private_detail_x, const pass& private_detail_y)
{
return private_detail_x.private_detail_te_handle_mem_var ==
private_detail_y.private_detail_te_handle_mem_var;
}
private:
......@@ -149,7 +155,7 @@ struct pass
std::string name() const override { return private_detail_te_value.name(); }
void apply(program& p) const override { return private_detail_te_value.apply(p); }
void apply(program& p) const override { private_detail_te_value.apply(p); }
PrivateDetailTypeErasedT private_detail_te_value;
};
......@@ -218,7 +224,7 @@ inline const ValueType& any_cast(const pass& x)
#endif
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_PASS_CONFIG_HPP
#define MIGRAPHX_GUARD_PASS_CONFIG_HPP
#include <migraphx/env.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_DISABLE_MEMORY_COLORING)
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_PASS_CONFIG_HPP
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_PROGRAM_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_PROGRAM_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_PROGRAM_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_PROGRAM_HPP
#include <list>
#include <unordered_map>
#include <migraph/operation.hpp>
#include <migraph/literal.hpp>
#include <migraph/builtin.hpp>
#include <migraph/instruction_ref.hpp>
#include <migraph/target.hpp>
#include <migraph/tracer.hpp>
#include <migraph/config.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/builtin.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/target.hpp>
#include <migraphx/tracer.hpp>
#include <migraphx/config.hpp>
#include <algorithm>
#include <iostream>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct program_impl;
......@@ -91,16 +91,22 @@ struct program
shape get_shape() const;
context& get_context() const;
instruction_ref validate() const;
void compile(const target& t, tracer trace = tracer{});
void finalize();
void perf_report(std::ostream& os, std::size_t n, parameter_map params) const;
void debug_print() const;
void debug_print(instruction_ref ins) const;
void debug_print(const std::vector<instruction_ref>& inss) const;
void dry_run(parameter_map params) const;
friend std::ostream& operator<<(std::ostream& os, const program& p);
friend bool operator==(const program& x, const program& y);
friend bool operator!=(const program& x, const program& y) { return !(x == y); }
......@@ -109,7 +115,7 @@ struct program
std::unique_ptr<program_impl> impl;
};
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_RANGES_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_RANGES_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_RANGES_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_RANGES_HPP
#include <algorithm>
#include <initializer_list>
#include <migraph/rank.hpp>
#include <migraph/config.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace detail {
......@@ -106,7 +106,7 @@ iterator_range<Iterator> range(std::pair<Iterator, Iterator> p)
return {p.first, p.second};
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_RANK_HPP
#define MIGRAPHX_GUARD_RTGLIB_RANK_HPP
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <int N>
struct rank : rank<N - 1>
{
};
template <>
struct rank<0>
{
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_RAW_DATA_HPP
#define MIGRAPH_GUARD_RAW_DATA_HPP
#ifndef MIGRAPHX_GUARD_RAW_DATA_HPP
#define MIGRAPHX_GUARD_RAW_DATA_HPP
#include <migraph/tensor_view.hpp>
#include <migraph/requires.hpp>
#include <migraph/config.hpp>
#include <migraphx/tensor_view.hpp>
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct raw_data_base
{
......@@ -104,7 +104,7 @@ struct raw_data : raw_data_base
bool matches() const
{
return is_data_ptr<T>{} ||
self->get_shape().type() == migraph::shape::get_type<get_data_type<T>>{};
self->get_shape().type() == migraphx::shape::get_type<get_data_type<T>>{};
}
template <class T>
......@@ -125,8 +125,8 @@ struct raw_data : raw_data_base
{
auto&& s = static_cast<const Derived&>(*this).get_shape();
auto&& buffer = static_cast<const Derived&>(*this).data();
if(s.type() != migraph::shape::get_type<T>{})
MIGRAPH_THROW("Incorrect data type for raw data");
if(s.type() != migraphx::shape::get_type<T>{})
MIGRAPHX_THROW("Incorrect data type for raw data");
return make_view(s, reinterpret_cast<T*>(buffer));
}
......@@ -136,15 +136,15 @@ struct raw_data : raw_data_base
{
auto&& s = static_cast<const Derived&>(*this).get_shape();
auto&& buffer = static_cast<const Derived&>(*this).data();
assert(s.type() == migraph::shape::get_type<T>{});
assert(s.type() == migraphx::shape::get_type<T>{});
return reinterpret_cast<T*>(buffer);
}
};
template <class T,
class U,
MIGRAPH_REQUIRES(std::is_base_of<raw_data_base, T>{} &&
std::is_base_of<raw_data_base, U>{})>
MIGRAPHX_REQUIRES(std::is_base_of<raw_data_base, T>{} &&
std::is_base_of<raw_data_base, U>{})>
bool operator==(const T& x, const U& y)
{
auto&& xshape = x.get_shape();
......@@ -166,8 +166,8 @@ bool operator==(const T& x, const U& y)
template <class T,
class U,
MIGRAPH_REQUIRES(std::is_base_of<raw_data_base, T>{} &&
std::is_base_of<raw_data_base, U>{})>
MIGRAPHX_REQUIRES(std::is_base_of<raw_data_base, T>{} &&
std::is_base_of<raw_data_base, U>{})>
bool operator!=(const T& x, const U& y)
{
return !(x == y);
......@@ -198,14 +198,14 @@ auto visit_all(T&& x, Ts&&... xs)
auto&& s = x.get_shape();
std::initializer_list<shape::type_t> types = {xs.get_shape().type()...};
if(!std::all_of(types.begin(), types.end(), [&](shape::type_t t) { return t == s.type(); }))
MIGRAPH_THROW("Types must be the same");
MIGRAPHX_THROW("Types must be the same");
return [&](auto v) {
// Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70100
detail::visit_all_impl(s, v, x, xs...);
};
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_RTGLIB_REFLECT_HPP
#define MIGRAPH_GUARD_RTGLIB_REFLECT_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_REFLECT_HPP
#define MIGRAPHX_GUARD_RTGLIB_REFLECT_HPP
#include <migraph/functional.hpp>
#include <migraph/rank.hpp>
#include <migraph/config.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/config.hpp>
#include <functional>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace detail {
......@@ -47,7 +47,7 @@ void reflect_each(T& x, F f)
});
}
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPH_GUARD_MIGRAPHLIB_REQUIRES_HPP
#define MIGRAPH_GUARD_MIGRAPHLIB_REQUIRES_HPP
#ifndef MIGRAPHX_GUARD_MIGRAPHLIB_REQUIRES_HPP
#define MIGRAPHX_GUARD_MIGRAPHLIB_REQUIRES_HPP
#include <type_traits>
#include <migraph/config.hpp>
#include <migraphx/config.hpp>
namespace migraph {
inline namespace MIGRAPH_INLINE_NS {
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <bool... Bs>
struct and_ : std::is_same<and_<Bs...>, and_<(Bs || true)...>> // NOLINT
......@@ -24,29 +24,29 @@ struct requires_enum
};
};
#define MIGRAPH_REQUIRES_CAT(x, y) x##y
#define MIGRAPHX_REQUIRES_CAT(x, y) x##y
#ifdef CPPCHECK
#define MIGRAPH_REQUIRES(...) class = void
#define MIGRAPHX_REQUIRES(...) class = void
#else
#if 0
// TODO: This currently crashed on clang
#define MIGRAPH_REQUIRES(...) \
typename migraph::requires_enum<__LINE__>::e MIGRAPH_REQUIRES_CAT( \
PrivateRequires, \
__LINE__) = migraph::requires_enum<__LINE__>::a, \
class = typename std::enable_if<and_<__VA_ARGS__, \
MIGRAPH_REQUIRES_CAT(PrivateRequires, __LINE__) == \
migraph::requires_enum<__LINE__>::a>{}>::type
#define MIGRAPHX_REQUIRES(...) \
typename migraphx::requires_enum<__LINE__>::e MIGRAPHX_REQUIRES_CAT( \
PrivateRequires, \
__LINE__) = migraphx::requires_enum<__LINE__>::a, \
class = typename std::enable_if<and_<__VA_ARGS__, \
MIGRAPHX_REQUIRES_CAT(PrivateRequires, __LINE__) == \
migraphx::requires_enum<__LINE__>::a>{}>::type
#else
#define MIGRAPH_REQUIRES(...) \
typename migraph::requires_enum<__LINE__>::e MIGRAPH_REQUIRES_CAT( \
PrivateRequires, __LINE__) = migraph::requires_enum<__LINE__>::a, \
#define MIGRAPHX_REQUIRES(...) \
typename migraphx::requires_enum<__LINE__>::e MIGRAPHX_REQUIRES_CAT( \
PrivateRequires, __LINE__) = migraphx::requires_enum<__LINE__>::a, \
class = typename std::enable_if<and_<__VA_ARGS__>{}>::type
#endif
#endif
} // namespace MIGRAPH_INLINE_NS
} // namespace migraph
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment