"src/vscode:/vscode.git/clone" did not exist on "4e44a1d87fbb1ad10f81ad0829313cd7a7c8c54b"
Commit bb5ea026 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

formatting

parent 15e553b1
...@@ -40,7 +40,9 @@ def measure(fn): ...@@ -40,7 +40,9 @@ def measure(fn):
start_time = time.perf_counter_ns() start_time = time.perf_counter_ns()
result = fn(*args, **kwargs) result = fn(*args, **kwargs)
end_time = time.perf_counter_ns() end_time = time.perf_counter_ns()
print(f"Elapsed time for {fn.__name__}: {(end_time - start_time) * 1e-6:.4f} ms\n") print(
f"Elapsed time for {fn.__name__}: {(end_time - start_time) * 1e-6:.4f} ms\n"
)
return result return result
return measure_ms return measure_ms
...@@ -87,11 +89,9 @@ def get_args(): ...@@ -87,11 +89,9 @@ def get_args():
help="Guidance scale", help="Guidance scale",
) )
parser.add_argument( parser.add_argument("--fp16",
"--fp16",
action="store_true", action="store_true",
help="Quantize MIGraphX models to fp16" help="Quantize MIGraphX models to fp16")
)
parser.add_argument( parser.add_argument(
"-o", "-o",
...@@ -155,7 +155,8 @@ class StableDiffusionMGX(): ...@@ -155,7 +155,8 @@ class StableDiffusionMGX():
latents = latents * self.scheduler.init_noise_sigma latents = latents * self.scheduler.init_noise_sigma
print("Running denoising loop...") print("Running denoising loop...")
latents = self.denoising_loop(text_embeddings, uncond_embeddings, latents, scale) latents = self.denoising_loop(text_embeddings, uncond_embeddings,
latents, scale)
print("Scale denoised result...") print("Scale denoised result...")
latents = 1 / 0.18215 * latents latents = 1 / 0.18215 * latents
...@@ -177,7 +178,8 @@ class StableDiffusionMGX(): ...@@ -177,7 +178,8 @@ class StableDiffusionMGX():
model = mgx.load(f"{file}.mxr", format="msgpack") model = mgx.load(f"{file}.mxr", format="msgpack")
elif os.path.isfile(f"{file.rstrip('''_fp16''')}.onnx"): elif os.path.isfile(f"{file.rstrip('''_fp16''')}.onnx"):
print("Parsing from onnx file...") print("Parsing from onnx file...")
model = mgx.parse_onnx(f"{file.rstrip('''_fp16''')}.onnx", map_input_dims=shapes) model = mgx.parse_onnx(f"{file.rstrip('''_fp16''')}.onnx",
map_input_dims=shapes)
if fp16: if fp16:
mgx.quantize_fp16(model) mgx.quantize_fp16(model)
model.compile(mgx.get_target("gpu")) model.compile(mgx.get_target("gpu"))
...@@ -215,7 +217,8 @@ class StableDiffusionMGX(): ...@@ -215,7 +217,8 @@ class StableDiffusionMGX():
pil_image.save(filename) pil_image.save(filename)
@measure @measure
def denoising_loop(self, text_embeddings, uncond_embeddings, latents, scale): def denoising_loop(self, text_embeddings, uncond_embeddings, latents,
scale):
for step, t in enumerate(self.scheduler.timesteps): for step, t in enumerate(self.scheduler.timesteps):
print(f"#{step}/{len(self.scheduler.timesteps)} step") print(f"#{step}/{len(self.scheduler.timesteps)} step")
latents = self.denoise_step(text_embeddings, uncond_embeddings, latents = self.denoise_step(text_embeddings, uncond_embeddings,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment