Commit b9d37172 authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

manual merge

parents 1af66a1c ea62d7aa
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/device/targets.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/errors.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
static std::vector<std::string> parse_targets() { return split_string(MIGRAPHX_GPU_TARGETS, ';'); }
const std::vector<std::string>& get_targets()
{
static auto result = parse_targets();
return result;
}
std::string get_targets_as_string() { return join_strings(get_targets(), ", "); }
static int get_device_id()
{
int device;
auto status = hipGetDevice(&device);
if(status != hipSuccess)
MIGRAPHX_THROW("No device");
return device;
}
std::string get_device_name()
{
hipDeviceProp_t props{};
auto status = hipGetDeviceProperties(&props, get_device_id());
if(status != hipSuccess)
MIGRAPHX_THROW("Failed to get device properties");
return props.gcnArchName;
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
#define MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
#include <migraphx/config.hpp>
#include <string>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
#define MIGRAPHX_GPU_TARGETS "@GPU_TARGETS@" // NOLINT
const std::vector<std::string>& get_targets();
std::string get_targets_as_string();
std::string get_device_name();
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_DEVICE_TARGETS_CPP
......@@ -72,12 +72,12 @@ struct hip_heap_vector
index_int l = 2 * index + 1;
index_int r = 2 * index + 2;
if(l < n && compare(data[data_index(l)], data[data_index(index)]))
if(l < n and compare(data[data_index(l)], data[data_index(index)]))
{
index = l;
}
if(r < n && compare(data[data_index(r)], data[data_index(index)]))
if(r < n and compare(data[data_index(r)], data[data_index(index)]))
{
index = r;
if(compare(data[data_index(l)], data[data_index(r)]))
......
......@@ -31,20 +31,6 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
template <class HipDeviceProp>
std::string get_arch_name(rank<0>, const HipDeviceProp& props)
{
return "gfx" + std::to_string(props.gcnArch);
}
template <class HipDeviceProp>
auto get_arch_name(rank<1>, const HipDeviceProp& props) -> decltype(std::string(props.gcnArchName))
{
return std::string(props.gcnArchName);
}
std::string get_arch_name(const hipDeviceProp_t& props) { return get_arch_name(rank<1>{}, props); }
int get_device_id()
{
int device;
......@@ -60,7 +46,7 @@ std::string get_device_name()
auto status = hipGetDeviceProperties(&props, get_device_id());
if(status != hipSuccess)
MIGRAPHX_THROW("Failed to get device properties");
return get_arch_name(props);
return props.gcnArchName;
}
} // namespace gpu
......
......@@ -86,7 +86,7 @@ struct mlir_op
size_t param_cnt = 0;
std::vector<std::string> names = mod->get_parameter_names();
std::sort(names.begin(), names.end());
for(std::string param_name : names)
for(const std::string& param_name : names)
{
ins_shapes[mod->get_parameter(param_name)] = inputs[param_cnt++];
}
......@@ -103,7 +103,10 @@ struct mlir_op
}
if(ins->name() == "@return")
{
return ins_shapes[ins->inputs().at(0)].with_type(type);
auto s = ins_shapes[ins->inputs().at(0)].with_type(type);
if(not s.standard())
MIGRAPHX_THROW("MLIR doesnt support non-standard output");
return s;
}
std::vector<shape> input_shapes;
input_shapes.resize(ins->inputs().size());
......@@ -119,6 +122,33 @@ struct mlir_op
MIGRAPHX_REGISTER_OP(mlir_op);
namespace {
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op)
{
std::vector<instruction_ref> top_inputs;
std::vector<instruction_ref> imm_inputs;
size_t input_cnt = 0;
for(instruction_ref input : gemm_based_op->inputs())
{
std::vector<operation> op_stream;
while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
{
op_stream.push_back(input->get_operator());
input = input->inputs().at(0);
}
top_inputs.push_back(input);
instruction_ref prev_input =
mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
for(const auto& op : reverse(op_stream))
{
prev_input = mm->add_instruction(op, {prev_input});
}
imm_inputs.push_back(prev_input);
}
instruction_ref new_gemm_based_op =
mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
return {new_gemm_based_op, top_inputs};
}
MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
{
......@@ -134,7 +164,7 @@ MIGRAPHX_PRED_MATCHER(is_mlir_conv, instruction_ref ins)
return true;
}
struct find_mlir_op
struct find_mlir_fused_ops
{
auto matcher() const
{
......@@ -163,34 +193,6 @@ struct find_mlir_op
return ins_map;
}
std::tuple<instruction_ref, std::vector<instruction_ref>>
fuse_input_ops_and_gemm_based_op(module_ref mm, instruction_ref gemm_based_op) const
{
std::vector<instruction_ref> top_inputs;
std::vector<instruction_ref> imm_inputs;
size_t input_cnt = 0;
for(instruction_ref input : gemm_based_op->inputs())
{
std::vector<operation> op_stream;
while(contains({"slice", "transpose", "contiguous", "reshape"}, input->name()))
{
op_stream.push_back(input->get_operator());
input = input->inputs().at(0);
}
top_inputs.push_back(input);
instruction_ref prev_input =
mm->add_parameter("y" + std::to_string(input_cnt++), input->get_shape());
for(const auto& op : reverse(op_stream))
{
prev_input = mm->add_instruction(op, {prev_input});
}
imm_inputs.push_back(prev_input);
}
instruction_ref new_gemm_based_op =
mm->add_instruction(gemm_based_op->get_operator(), imm_inputs);
return {new_gemm_based_op, top_inputs};
}
// Whitelist supported fusion options, including imposing type constraints
// for cases where MLIR only supports an operation (usually a pointwise function)
// on particular types.
......@@ -210,42 +212,46 @@ struct find_mlir_op
return false;
}
const std::initializer_list<std::string> any_type_ops = {"@literal", "@param", "@return"};
const std::initializer_list<std::string> no_bool_ops = {"convolution",
"quant_convolution",
"dot",
"quant_dot",
"add",
"clip",
"relu",
"sub",
"mul",
"div",
"pow",
"where",
"quantizelinear",
"dequantizelinear",
"abs",
"neg"};
const std::initializer_list<std::string> fp_only_ops = {"ceil",
"erf",
"exp",
"floor",
"log",
"recip",
"rsqrt",
"sigmoid"
"softmax",
"tanh"};
const std::initializer_list<std::string> no_bool_ops = {
"convolution",
"quant_convolution",
"dot",
"quant_dot",
"add",
"clip",
"relu",
"sub",
"mul",
"div",
"pow",
"where",
"quantizelinear",
"dequantizelinear",
"abs",
"neg",
};
const std::initializer_list<std::string> fp_only_ops = {
"ceil",
"erf",
"exp",
"floor",
"log",
"recip",
"rsqrt",
"sigmoid",
"softmax",
"tanh",
};
bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
if(contains(any_type_ops, name))
return true;
if(result_type != type_t::bool_type && contains(no_bool_ops, name))
if(result_type != type_t::bool_type and contains(no_bool_ops, name))
return true;
if(is_float && contains(fp_only_ops, name))
if(is_float and contains(fp_only_ops, name))
return true;
// Only conversions between floating types are known to be unambigiously
// supported.
if(is_float && name == "convert")
if(is_float and name == "convert")
{
return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
......@@ -277,9 +283,9 @@ struct find_mlir_op
names.end(),
ins->inputs().begin(),
std::inserter(param_map, param_map.end()),
[&, &anchor_op = anchor_op](auto name, auto input) {
[&, &anchor = anchor_op](auto name, auto input) {
if(input == x_ins)
return std::make_pair(pm->get_parameter(name), anchor_op);
return std::make_pair(pm->get_parameter(name), anchor);
return std::make_pair(pm->get_parameter(name),
mm->add_parameter(name, input->get_shape()));
});
......@@ -296,20 +302,115 @@ struct find_mlir_op
}
};
struct find_mlir_standalone_op
{
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto conv_based_op = r.result;
// enable only for fp32/fp16/i8 types
if(std::any_of(conv_based_op->inputs().begin(), conv_based_op->inputs().end(), [&](auto i) {
return not contains(
{shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
i->get_shape().type());
}))
return;
static size_t counter = 0;
module_ref mm = mpm.create_module("mlir_" + std::to_string(counter++));
mm->set_bypass();
auto [anchor_op, top_inputs] = fuse_input_ops_and_gemm_based_op(mm, conv_based_op);
mm->add_return({anchor_op});
mpm.get_module().replace_instruction(
conv_based_op, mlir_op{conv_based_op->get_operator()}, top_inputs, {mm});
}
};
struct find_mlir_standalone_convolution_op : find_mlir_standalone_op
{
auto matcher() const { return is_mlir_conv; }
};
struct find_mlir_standalone_dot_op : find_mlir_standalone_op
{
auto matcher() const { return match::any_of(match::name("dot"), match::name("quant_dot")); }
};
/**
* @brief Declares a new MIGraphX environment variable which forces to generate
* only specific MLIR operations.
*
* The variable, if defined, forces MIGraphX to use only specific operations
* with MLIR regardless of the underlying GPU architecture. The variable accepts
* a list of operations separated by comma. The variable recognizes the following
* operations: "fused", "convolution", "dot". If the variable is not defined MIGraphX
* will decide by itself which operations to delegate to MLIR. The variable is
* intended to be primarily used by rocMLIR developers.
*/
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_USE_SPECIFIC_OPS);
bool is_self_decide() { return string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "").empty(); }
bool is_requested(std::string_view option)
{
assert(not is_self_decide());
auto string_value = string_value_of(MIGRAPHX_MLIR_USE_SPECIFIC_OPS{}, "");
const auto options = split_string(string_value, ',');
return contains(options, option);
}
bool is_enabled(std::string_view op_name, context* ctx)
{
if(is_self_decide())
{
if(op_name == "fused")
{
return true;
}
else if(op_name == "convolution" or op_name == "quant_convolution")
{
if(ctx == nullptr)
{
return false;
}
else
{
const auto& device = ctx->get_current_device();
const std::string navi_family{"gfx110"};
return starts_with(device.get_gfx_name(), navi_family);
}
}
else
{
return false;
}
}
return is_requested(op_name);
}
} // namespace
#endif
#endif // MIGRAPHX_MLIR
void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
match::find_matches(mpm, find_mlir_op{});
if(is_enabled("fused", this->ctx))
{
match::find_matches(mpm, find_mlir_fused_ops{});
}
if(is_enabled("convolution", this->ctx))
{
match::find_matches(mpm, find_mlir_standalone_convolution_op{});
}
if(is_enabled("dot", this->ctx))
{
match::find_matches(mpm, find_mlir_standalone_dot_op{});
}
#else
(void)mpm;
#endif
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -790,22 +790,26 @@ struct find_layernorm_pointwise
{
auto matcher() const
{
return precompile_name("pointwise")(match::arg(0)(
return precompile_name("pointwise")(match::any_of[match::inputs()](
precompile_name("gpu::prelayernorm", "gpu::preadd_layernorm").bind("layernorm")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto pw_ins = r.result;
auto layernorm = r.instructions["layernorm"];
if(not layernorm->module_inputs().empty())
return;
auto* pm = ins->module_inputs().front();
auto* pm = pw_ins->module_inputs().front();
auto pw_inputs = pw_ins->inputs();
auto ln_pos = std::find(pw_inputs.begin(), pw_inputs.end(), layernorm);
assert(ln_pos != pw_inputs.end());
pw_inputs.erase(ln_pos);
auto inputs = layernorm->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
inputs.insert(inputs.end(), pw_inputs.begin(), pw_inputs.end());
m.replace_instruction(ins, layernorm->get_operator(), inputs, {pm});
m.replace_instruction(pw_ins, layernorm->get_operator(), inputs, {pm});
}
};
......
......@@ -55,7 +55,7 @@ bool is_device_ptr(const void* ptr)
auto status = hipPointerGetAttributes(&attr, ptr);
if(status != hipSuccess)
return false;
return attr.memoryType == hipMemoryTypeDevice;
return attr.type == hipMemoryTypeDevice;
}
std::size_t get_available_gpu_memory()
......
......@@ -58,6 +58,8 @@ struct hiprtc_src_file
}
};
MIGRAPHX_GPU_EXPORT bool hip_has_flags(const std::vector<std::string>& flags);
MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> compile_hip_src_with_hiprtc(
std::vector<hiprtc_src_file> srcs, std::string params, const std::string& arch);
......
......@@ -46,13 +46,7 @@ using hip_event_ptr = MIGRAPHX_MANAGE_PTR(hipEvent_t, hipEventDestroy);
struct hip_device
{
hip_device()
{
device_props.gcnArchName[0] = '\0';
device_props.gcnArch = 0;
device_props.multiProcessorCount = 0;
add_stream();
}
hip_device() : device_props{} { add_stream(); }
hip_device(std::size_t id, std::size_t n) : device_id(id)
{
......@@ -171,7 +165,7 @@ struct hip_device
std::size_t stream_id() const { return current_stream; }
std::string get_device_name() const { return get_arch_name(device_props); }
std::string get_device_name() const { return device_props.gcnArchName; }
std::string get_gfx_name() const { return trim(split_string(get_device_name(), ':').front()); }
......
......@@ -84,8 +84,10 @@ struct miopen_convolution
{
check_shapes{inputs, op}.has(4);
std::vector<shape> conv_inputs(inputs.begin(), inputs.begin() + 2);
check_shapes{conv_inputs, *this}.max_ndims(5).packed_layouts(
{{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}});
check_shapes{conv_inputs, *this}
.max_ndims(5)
.packed_layouts({{0, 1, 2}, {0, 1, 2, 3}, {0, 2, 3, 1}, {0, 1, 2, 3, 4}})
.same_layout();
return migraphx::compute_shape<Op>(op, conv_inputs);
}
......
......@@ -33,8 +33,6 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_GPU_EXPORT std::string get_arch_name(const hipDeviceProp_t& props);
MIGRAPHX_GPU_EXPORT std::string get_device_name();
MIGRAPHX_GPU_EXPORT int get_device_id();
......
......@@ -92,7 +92,7 @@ struct hip_sync_stream
return inputs.front();
}
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
argument compute(const context& ctx, const shape&, const std::vector<argument>& args) const
{
gpu_sync(ctx);
if(args.empty())
......
......@@ -37,7 +37,7 @@ struct module;
namespace gpu {
MIGRAPHX_GPU_EXPORT std::string dump_mlir(const module& m);
MIGRAPHX_GPU_EXPORT code_object_op compile_mlir(const context& ctx,
MIGRAPHX_GPU_EXPORT code_object_op compile_mlir(const context& migraphx_ctx,
module m,
const std::vector<instruction_ref>& inputs,
const value& solution);
......@@ -47,8 +47,10 @@ MIGRAPHX_GPU_EXPORT instruction_ref insert_mlir(module& m,
code_object_op co,
const std::vector<instruction_ref>& inputs);
MIGRAPHX_GPU_EXPORT tuning_config get_tuning_config_mlir(module m,
const std::vector<shape>& inputs);
MIGRAPHX_GPU_EXPORT tuning_config get_tuning_config_mlir(const context& migraphx_ctx,
module m,
const std::vector<shape>& inputs,
bool exhaustive);
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -300,7 +300,8 @@ struct ck_gemm_compiler : compiler<ck_gemm_compiler>
const auto& b_shape = inputs[1];
const auto& c_shape = inputs.back();
auto rank = a_shape.lens().size();
// cppcheck-suppress unreadVariable
auto rank = a_shape.ndim();
auto batch_count = get_batch_count(c_shape);
auto m = c_shape.lens()[rank - 2];
......
......@@ -37,7 +37,7 @@ struct mlir_compiler : compiler<mlir_compiler>
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
compiler_replace
compile(context& ctx, instruction_ref ins, const operation&, const value& solution) const
compile(const context& ctx, instruction_ref ins, const operation&, const value& solution) const
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
......@@ -52,14 +52,14 @@ struct mlir_compiler : compiler<mlir_compiler>
}};
}
optional<tuning_config>
get_tuning_config(context&, instruction_ref ins, const operation&, bool exhaustive) const
optional<tuning_config> get_tuning_config(const context& ctx,
instruction_ref ins,
const operation&,
bool exhaustive) const
{
if(not exhaustive)
return nullopt;
auto shapes = to_shapes(ins->inputs());
auto* smod = ins->module_inputs().front();
return get_tuning_config_mlir(*smod, shapes);
return get_tuning_config_mlir(ctx, *smod, shapes, exhaustive);
}
};
......
......@@ -81,7 +81,7 @@ struct roialign_compiler : compiler<roialign_compiler>
// coord_trans_mode
auto ctm = v.at("coordinate_transformation_mode").to<std::string>();
float rois_offset = (ctm == "output_half_pixel") ? -0.5f : 0.0f;
float rois_offset = (ctm == "half_pixel") ? -0.5f : 0.0f;
options.params += " -DROIS_OFFSET=" + std::to_string(rois_offset);
// spatial_scale
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -40,6 +40,7 @@
#include <migraphx/op/if_op.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/reshape_lazy.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/lowering.hpp>
......@@ -89,7 +90,6 @@ struct miopen_apply
offload_copy = (mod == mpm->get_root_module()) ? pass->offload_copy : false;
add_generic_op("contiguous");
add_extend_op("argmax");
add_extend_op("argmin");
add_extend_op("logsoftmax");
......@@ -115,6 +115,7 @@ struct miopen_apply
add_neg_op();
add_nms_op();
add_select_module_op();
add_reshape_lazy_op();
}
void copy_params() const
......@@ -376,6 +377,32 @@ struct miopen_apply
return mod->replace_instruction(ins, ins->get_operator(), inputs, ins->module_inputs());
});
}
/**
* Adds reshape lazy to reshape ops that can be aliased instead of copied.
* `gpu::contiguous` are added before and after the reshape; these contiguous
* instructions can be removed by the eliminate_contiguous pass.
*/
void add_reshape_lazy_op()
{
apply_map.emplace("reshape", [=](instruction_ref ins) {
std::vector<instruction_ref> before_contiguous_args = ins->inputs();
auto before_alloc = insert_allocation(ins, std::prev(ins)->get_shape());
before_contiguous_args.push_back(before_alloc);
auto before_contig =
mod->insert_instruction(ins, make_op("gpu::contiguous"), {before_contiguous_args});
auto new_lazy_reshape = mod->insert_instruction(
ins,
make_op("reshape_lazy", {{"dims", {ins->get_operator().to_value().at("dims")}}}),
before_contig);
std::vector<instruction_ref> after_contiguous_args = {new_lazy_reshape};
auto after_alloc = insert_allocation(new_lazy_reshape, new_lazy_reshape->get_shape());
after_contiguous_args.push_back(after_alloc);
return mod->replace_instruction(ins, make_op("gpu::contiguous"), after_contiguous_args);
});
}
};
void lowering::apply(module_pass_manager& mpm) const
......
......@@ -22,7 +22,9 @@
* THE SOFTWARE.
*/
#include "migraphx/make_op.hpp"
#include <migraphx/stringutils.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <ostream>
#ifdef MIGRAPHX_MLIR
#include <mlir-c/IR.h>
......@@ -33,10 +35,14 @@
#include <mlir-c/Dialect/Rock.h>
#include <mlir-c/IntegerSet.h>
#include <mlir-c/Pass.h>
#include <mlir-c/Support.h>
#include <mutex>
#if !defined(MLIR_MIGRAPHX_DIALECT_API_VERSION) || MLIR_MIGRAPHX_DIALECT_API_VERSION != 3
#warning "Incompatible version of rocMLIR library used, disabling"
// Only undefine when not using cppcheck
#ifndef CPPCHECK
#undef MIGRAPHX_MLIR
#endif
#else
#include <mlir-c/RegisterRocMLIR.h>
#endif
......@@ -50,6 +56,7 @@
#include <migraphx/ranges.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/gpu/device_name.hpp>
#include <migraphx/gpu/perfdb.hpp>
#include <migraphx/gpu/tuning_config.hpp>
......@@ -65,6 +72,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MLIR);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_DB);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_MLIR_TUNING_CFG);
......@@ -89,6 +97,8 @@ struct mlir_handle
friend bool operator==(ptr x, ptr y) { return x.get_value() == y.get_value(); }
friend bool operator!=(ptr x, ptr y) { return not(x == y); }
explicit operator bool() const noexcept { return obj != ptr(); }
T obj{};
};
......@@ -172,10 +182,75 @@ std::string mlir_print(F f, T x)
return ss.str();
}
bool has_xdlops(const std::string& target_arch)
struct mlir_logger
{
std::stringstream ss;
mlir_context* ctx;
std::optional<MlirDiagnosticHandlerID> id;
mlir_logger() : ctx(nullptr), id(std::nullopt) {}
mlir_logger(mlir_context* context) : ctx(context)
{
id =
mlirContextAttachDiagnosticHandler(ctx->get(), mlir_diagnostic_print_cb, this, nullptr);
}
~mlir_logger()
{
if(id.has_value())
mlirContextDetachDiagnosticHandler(ctx->get(), *id);
}
mlir_logger(const mlir_logger& other) = delete;
mlir_logger& operator=(const mlir_logger& other) = delete;
mlir_logger(mlir_logger&& other) noexcept
: ss(std::move(other.ss)), ctx(other.ctx), id(other.id)
{
other.ctx = nullptr;
other.id = std::nullopt;
}
mlir_logger& operator=(mlir_logger other) noexcept
{
std::swap(ss, other.ss);
std::swap(ctx, other.ctx);
std::swap(id, other.id);
return *this;
}
std::string str() const { return ss.str(); }
void clear() { ss = std::stringstream{}; }
static MlirLogicalResult mlir_diagnostic_print_cb(MlirDiagnostic diag, void* logger);
MlirLogicalResult handle(MlirDiagnostic diag);
};
MlirLogicalResult mlir_logger::mlir_diagnostic_print_cb(MlirDiagnostic diag, void* logger)
{
return reinterpret_cast<mlir_logger*>(logger)->handle(diag);
}
MlirLogicalResult mlir_logger::handle(MlirDiagnostic diag)
{
const auto device_name = trim(split_string(target_arch, ':').front());
return (starts_with(device_name, "gfx9") and device_name >= "gfx908");
MlirDiagnosticSeverity sev = mlirDiagnosticGetSeverity(diag);
switch(sev)
{
case MlirDiagnosticSeverity::MlirDiagnosticError: ss << "Error: "; break;
case MlirDiagnosticSeverity::MlirDiagnosticWarning: ss << "Warning: "; break;
case MlirDiagnosticSeverity::MlirDiagnosticNote: ss << "Note: "; break;
case MlirDiagnosticSeverity::MlirDiagnosticRemark: ss << "Remark: "; break;
}
mlir_print(mlirDiagnosticPrint, diag, [&](auto s) { ss << s; });
ss << std::endl;
for(intptr_t i = 0, e = mlirDiagnosticGetNumNotes(diag); i < e; ++i)
{
(void)handle(mlirDiagnosticGetNote(diag, i));
}
return mlirLogicalResultSuccess();
}
struct mlir_program
......@@ -184,7 +259,8 @@ struct mlir_program
: ctx(mlirContextCreateWithRegistry(get_dialect_registry().get(),
/*threadingEnable=*/false)),
location(mlirLocationUnknownGet(ctx.get())),
mmodule(mlirModuleCreateEmpty(location))
mmodule(mlirModuleCreateEmpty(location)),
logger(&ctx)
{
mlirContextSetThreadPool(ctx.get(), get_thread_pool().get());
mlirContextLoadAllAvailableDialects(ctx.get());
......@@ -512,7 +588,8 @@ struct mlir_program
ops.add_attributes({{"function_type", make_function_type(inputs, outputs)},
{"sym_name", sym_name},
{"kernel", std::string("mixr")},
{"arch", target_arch}});
{"arch", target_arch},
{"num_cu", num_cu}});
ops.add_region(std::move(region));
insert(body, std::move(ops));
......@@ -559,14 +636,7 @@ struct mlir_program
static std::string get_symbol_name(const module& m)
{
for(auto ins : iterator_for(m))
{
if(ins->name() == "convolution" or ins->name() == "dot")
{
return "mlir_" + ins->name();
}
}
return "main";
return "mlir_" + gen::generate_name_from_ops(m);
}
void parse(const module& m)
......@@ -602,9 +672,6 @@ struct mlir_program
{
pp =
problem_params{ins->get_operator(), to_shapes(ins->inputs()), ins->get_shape()};
// check if HW supports xdlops
if(has_xdlops(target_arch))
ops.add_attributes({{"xdlopsV2", true}});
}
std::vector<MlirValue> inputs;
......@@ -621,21 +688,49 @@ struct mlir_program
}
}
void run_high_level_pipeline() MIGRAPHX_TIDY_CONST
void run_high_level_pipeline()
{
mlir_pass_manager pm_front{mlirPassManagerCreate(ctx.get())};
mlirMIGraphXAddHighLevelPipeline(pm_front.get());
mlirPassManagerRunOnOp(pm_front.get(), mlirModuleGetOperation(mmodule.get()));
logger.clear();
if(mlirLogicalResultIsFailure(
mlirPassManagerRunOnOp(pm_front.get(), mlirModuleGetOperation(mmodule.get()))))
{
std::string error = "Invalid MLIR created: " + logger.str();
if(enabled(MIGRAPHX_TRACE_MLIR{}))
{
std::cout << error << std::endl;
}
MIGRAPHX_THROW(error);
}
}
void run_backend_pipeline() MIGRAPHX_TIDY_CONST
void run_backend_pipeline()
{
mlir_pass_manager pm_back{mlirPassManagerCreate(ctx.get())};
mlirMIGraphXAddBackendPipeline(pm_back.get(), target_arch.c_str());
mlirPassManagerRunOnOp(pm_back.get(), mlirModuleGetOperation(mmodule.get()));
logger.clear();
const size_t trace = value_of(MIGRAPHX_TRACE_MLIR{});
static std::mutex mutex;
auto mod_op = mlirModuleGetOperation(mmodule.get());
if(trace >= 2)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
}
if(mlirLogicalResultIsFailure(mlirPassManagerRunOnOp(pm_back.get(), mod_op)))
{
std::string error = "MLIR backend compilation failed: " + logger.str();
if(enabled(MIGRAPHX_TRACE_MLIR{}))
{
std::cout << error << std::endl;
}
MIGRAPHX_THROW(error);
}
}
code_object_op compile(const value& solution) MIGRAPHX_TIDY_CONST
code_object_op compile(const value& solution)
{
// 1st pipeline to call
run_high_level_pipeline();
......@@ -653,7 +748,12 @@ struct mlir_program
return op;
}
void find_target() { target_arch = get_device_name(); }
void set_gpu_properties(const context& migraphx_ctx)
{
const auto& device = migraphx_ctx.get_current_device();
target_arch = device.get_device_name();
num_cu = device.get_cu_count();
}
std::pair<std::size_t, std::size_t> get_launch_params() const
{
......@@ -667,7 +767,7 @@ struct mlir_program
value::binary get_binary() const
{
int size = 0;
size_t size = 0;
mlirGetBinary(mmodule.get(), &size, nullptr);
value::binary result(size);
if(mlirGetBinary(mmodule.get(), &size, reinterpret_cast<char*>(result.data())))
......@@ -675,30 +775,45 @@ struct mlir_program
MIGRAPHX_THROW("Failed to compile mlir program");
}
void set_tuning(const value& v)
void set_tuning(const value& v) MIGRAPHX_TIDY_CONST
{
auto str = v.to<std::string>();
// We need to make a copy of the buffer since mlirRockTuningSetFromStr may modify the string
std::vector<char> buffer(str.begin(), str.end());
buffer.push_back(0);
if(not mlirRockTuningSetFromStr(mmodule.get(), buffer.data()))
MIGRAPHX_THROW("Failed setting tuning key: " + str);
const auto* str = v.if_string();
if(str == nullptr)
MIGRAPHX_THROW("mlir tuning solutions must be strings");
if(not mlirRockTuningSetFromStr(mmodule.get(), make_mlir_string_ref(*str)))
MIGRAPHX_THROW("Failed setting tuning key: " + *str);
}
tuning_config get_tuning_config() MIGRAPHX_TIDY_CONST
tuning_config get_tuning_config(bool exhaustive)
{
tuning_config tc;
run_high_level_pipeline();
mlir_tuning_space params{mlirRockTuningSpaceCreate(mmodule.get())};
for(auto i : range(mlirRockTuningGetNumParamsFull(params.get())))
auto tuning_mode =
exhaustive ? RocmlirTuningParamSetKindFull : RocmlirTuningParamSetKindQuick;
if(enabled(MIGRAPHX_MLIR_TUNE_EXHAUSTIVE{}))
tuning_mode = RocmlirTuningParamSetKindExhaustive;
mlir_tuning_space params{mlirRockTuningSpaceCreate(mmodule.get(), tuning_mode)};
for(auto i : range(mlirRockTuningGetNumParams(params.get())))
{
mlir_tuning_param param{mlirRockTuningParamCreate()};
if(not mlirRockTuningParamGet(params.get(), i, param.get()))
MIGRAPHX_THROW("Incorrect mlir tuning parameter: " + std::to_string(i));
tc.solutions.push_back(std::string{mlirRockTuningGetParamStr(param.get())});
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> perf_key;
size_t perf_key_bytes =
mlirRockTuningParamToString(param.get(), perf_key.data(), perf_key.size());
if(perf_key_bytes > perf_key.size())
MIGRAPHX_THROW("Tuning perf key was " + std::to_string(perf_key_bytes) +
" bytes and thus too long");
tc.solutions.emplace_back(
std::string(perf_key.begin(), perf_key.begin() + perf_key_bytes));
}
mlir_tuning_table tuning_table{mlirRockTuningTableCreate()};
tc.problem = std::string{mlirRockTuningGetKey(tuning_table.get(), mmodule.get())};
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> tuning_key;
size_t tuning_key_bytes =
mlirRockTuningGetKey(mmodule.get(), tuning_key.data(), tuning_key.size());
if(tuning_key_bytes > tuning_key.size())
MIGRAPHX_THROW("Tuning table key was " + std::to_string(tuning_key_bytes) +
" bytes and thus too long");
tc.problem = std::string(tuning_key.begin(), tuning_key.begin() + tuning_key_bytes);
return tc;
}
......@@ -706,13 +821,14 @@ struct mlir_program
// This function appends to tuning cfg file that could be
// used with rocMLIR tuning scripts.
void dump_tuning_cfg(const char* prob_config) const
void dump_tuning_cfg(const std::string& prob_config) const
{
std::string tuning_cfg_path = string_value_of(MIGRAPHX_MLIR_TUNING_CFG{});
if(!tuning_cfg_path.empty())
if(not tuning_cfg_path.empty())
{
std::vector<std::string> tokens = split_string(prob_config, '\t');
std::string prob = tokens[1];
std::string prob = tokens[2];
if(starts_with(prob, "conv"))
{
tuning_cfg_path += ".conv";
......@@ -722,55 +838,72 @@ struct mlir_program
tuning_cfg_path += ".gemm";
}
std::ofstream tuning_cfg(tuning_cfg_path, std::ios::app);
prob =
trim(prob, [](unsigned char c) { return (c == '\0') or (std::isspace(c) != 0); });
tuning_cfg << prob << std::endl;
}
}
static mlir_tuning_table create_tuning_table()
static std::pair<mlir_tuning_table, bool> load_tuning_table()
{
mlir_tuning_table tuning_table{mlirRockTuningTableCreate()};
bool found_table = false;
std::string tuning_db_path = string_value_of(MIGRAPHX_MLIR_TUNING_DB{});
if(!tuning_db_path.empty())
if(not tuning_db_path.empty())
{
std::ifstream tuning_db_tsv(tuning_db_path);
if(tuning_db_tsv)
{
found_table = true;
std::string line;
while(std::getline(tuning_db_tsv, line))
{
std::vector<std::string> tokens = split_string(line, '\t');
std::string arch = tokens[0];
std::string prob = tokens[1];
std::string perf = tokens[2];
std::string key = arch.append("\t").append(prob);
mlirRockTuningUpdateTable(tuning_table.get(), key.c_str(), perf.c_str(), 1.0);
std::string num_cu = tokens[1];
std::string prob = tokens[2];
std::string perf = tokens[3];
std::string key = arch.append("\t").append(num_cu).append("\t").append(prob);
mlirRockTuningUpdateTable(tuning_table.get(),
make_mlir_string_ref(key),
make_mlir_string_ref(perf),
1.0);
}
}
}
else
{
found_table = false;
std::cerr
<< "WARNING: MLIR tuning db not found. Please set MIGRAPHX_MLIR_TUNING_DB for "
"optimal performance."
<< std::endl;
}
return tuning_table;
return std::make_pair(std::move(tuning_table), found_table);
}
bool get_module_tuned() const
{
static mlir_tuning_table tuning_table = create_tuning_table();
// The tuning table as currently implemented is currently not
// thread safe. This will be fixed in the future. For now,
// stick a mutex around all tuning table interaction.
static std::mutex lock;
std::lock_guard<std::mutex> guard(lock);
if(!mlirRockTuningSetFromTable(tuning_table.get(), mmodule.get()))
static std::pair<mlir_tuning_table, bool> tuning_table = load_tuning_table();
if(not mlirRockTuningSetFromTable(tuning_table.first.get(), mmodule.get()))
{
const char* prob_config = mlirRockTuningGetKey(tuning_table.get(), mmodule.get());
std::stringstream key(prob_config);
std::cerr << "fails to set param on" << prob_config << std::endl;
dump_tuning_cfg(prob_config);
std::array<char, ROCMLIR_TUNING_KEY_BUFSZ> prob_config;
size_t prob_config_bytes =
mlirRockTuningGetKey(mmodule.get(), prob_config.data(), prob_config.size());
if(prob_config_bytes >= prob_config.size())
{
std::cerr << "MLIR tuning key overflowed buffer, needed " << prob_config_bytes
<< " bytes" << std::endl;
return false;
}
std::string prob_config_str(prob_config.begin(),
prob_config.begin() + prob_config_bytes);
if(tuning_table.second)
{
std::cerr << "NOTE: MLIR tuning table did not include a key for " << prob_config_str
<< std::endl;
}
dump_tuning_cfg(prob_config_str);
return false;
}
return true;
......@@ -779,9 +912,11 @@ struct mlir_program
mlir_context ctx;
MlirLocation location;
mlir_module mmodule;
mlir_logger logger;
problem_params pp;
std::deque<std::string> strings{};
std::string target_arch;
std::string target_arch = "";
std::size_t num_cu = 0;
std::string sym_name;
};
......@@ -838,7 +973,7 @@ void adjust_param_shapes(module& m, const std::vector<shape>& inputs)
}
}
code_object_op compile_mlir(const context&,
code_object_op compile_mlir(const context& migraphx_ctx,
module m,
const std::vector<instruction_ref>& inputs,
const value& solution)
......@@ -846,15 +981,22 @@ code_object_op compile_mlir(const context&,
adjust_param_shapes(m, to_shapes(inputs));
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
static std::mutex mutex;
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << m << std::endl;
}
mlir_program mp;
mp.find_target();
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
}
auto co = mp.compile(solution);
co.expected_inputs = to_shapes(inputs);
co.output = m.get_output_shapes().front();
......@@ -877,14 +1019,17 @@ instruction_ref insert_mlir(module& m,
return m.insert_instruction(ins, co, refs);
}
tuning_config get_tuning_config_mlir(module m, const std::vector<shape>& inputs)
tuning_config get_tuning_config_mlir(const context& migraphx_ctx,
module m,
const std::vector<shape>& inputs,
bool exhaustive)
{
adjust_param_shapes(m, inputs);
mlir_program mp;
mp.find_target();
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
return mp.get_tuning_config();
return mp.get_tuning_config(exhaustive);
}
#else
......@@ -909,10 +1054,14 @@ instruction_ref
insert_mlir(module& m, instruction_ref, code_object_op co, const std::vector<instruction_ref>&)
{
use(co);
use(m);
return m.end();
}
tuning_config get_tuning_config_mlir(module, const std::vector<shape>&) { return {}; }
tuning_config get_tuning_config_mlir(const context&, module, const std::vector<shape>&, bool)
{
return {};
}
// NOLINTEND(performance-unnecessary-value-param)
#endif
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifdef __HIP_DEVICE_COMPILE__
#error \
"Device compilation not allowed for migraphx_gpu. Do not link with hip::device. Device code should go into migraphx_device or migraphx_kernels"
#endif
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/permutation.hpp>
#include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/match/layernorm.hpp>
#include <migraphx/check_shapes.hpp>
......@@ -45,40 +46,42 @@ struct layernorm_base
}
shape compute_shape(std::vector<shape> inputs, std::vector<module_ref> mods) const
{
std::size_t nargs = 1;
std::size_t nargs = N;
if(not mods.empty())
{
auto* pm = mods.front();
nargs = pm->get_parameter_names().size();
nargs += pm->get_parameter_names().size() - 1;
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs);
auto s = inputs.front();
auto t = s.type();
if(not mods.empty())
t = mods.front()->get_output_shapes().front().type();
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {t, s.lens()};
}
else
{
return s.with_lens(t, s.lens());
}
// Scalar output if all inputs are scalar
if(inputs.front().elements() == 1 and
all_of(inputs, [](const auto& ss) { return ss.scalar(); }))
return inputs.front();
auto l_s = shape::from_permutation(
t, s.lens(), find_permutation(std::vector<shape>(inputs.begin(), inputs.begin() + N)));
// just prelayernorm or preadd_layernorm
if(nargs <= N)
return l_s;
// else, layernorm + pointwise fusion, preserve layout of fused op
std::vector<shape> lp_s(inputs.begin() + N, inputs.end());
lp_s.insert(lp_s.begin(), l_s);
return shape::from_permutation(t, s.lens(), find_permutation(lp_s));
}
};
struct layernorm : layernorm_base<layernorm, 0>
struct layernorm : layernorm_base<layernorm, 1>
{
std::string name() const { return "gpu::prelayernorm"; }
};
MIGRAPHX_REGISTER_OP(layernorm);
struct add_layernorm : layernorm_base<add_layernorm, 1>
struct add_layernorm : layernorm_base<add_layernorm, 2>
{
std::string name() const { return "gpu::preadd_layernorm"; }
};
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment