Commit b8090620 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into rnn_optimization

parents c2db3b96 3540f1b9
#include <migraphx/gpu/device/clip.hpp>
#include <migraphx/gpu/device/nary.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void clip(hipStream_t stream,
const argument& result,
const argument& arg1,
const float max,
const float min)
{
nary(stream, result, arg1)(
[max, min](auto x) { return std::min<decltype(x)>(std::max<decltype(x)>(min, x), max); });
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#include <migraphx/gpu/device/convert.hpp>
#include <migraphx/gpu/device/nary.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void convert(hipStream_t stream, const argument& result, const argument& arg)
{
result.visit([&](auto output) {
arg.visit([&](auto input) {
const auto* input_ptr = device_cast(input.data());
auto* output_ptr = device_cast(output.data());
gs_launch(stream,
result.get_shape().elements())([=](auto i) { output_ptr[i] = input_ptr[i]; });
});
});
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -17,47 +17,56 @@ argument logsoftmax(hipStream_t stream,
int axis)
{
auto lens = output_shape.lens();
std::size_t batch_size = std::accumulate(
lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<std::size_t>());
std::size_t n_dims = std::accumulate(
lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<std::size_t>());
migraphx::shape comp_shape{output_shape.type(), {batch_size, n_dims}};
auto lens = output_shape.lens();
auto num_in_batch = lens[axis];
auto batch_lens = lens;
batch_lens[axis] = 1;
migraphx::shape batch_shape{output_shape.type(), batch_lens};
visit_all(args.back(), args.front())([&](auto output, auto input) {
const auto* input_ptr = device_cast(input.data());
auto* output_ptr = device_cast(output.data());
visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch
gs_launch(stream, batch_size)([=](auto i) {
std::size_t row_start = i * n_dims;
// get max
auto batch_max = input_ptr[row_start];
for(std::size_t j = 1; j < n_dims; ++j)
{
auto ind = row_start + j;
batch_max = std::max(to_hip_type(batch_max), to_hip_type(input_ptr[ind]));
}
// each thread is for one item in the batch
gs_launch(stream, batch_shape.elements())([=](auto i) {
auto batch_idx = desc_batch.multi(i);
auto data_idx = batch_idx;
for(std::size_t j = 0; j < n_dims; ++j)
{
auto ind = row_start + j;
output_ptr[ind] = input_ptr[ind] - batch_max;
}
// get max
auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < num_in_batch; ++j)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
batch_max = std::max(to_hip_type(batch_max), to_hip_type(input_ptr[idx]));
}
auto batch_sum = ::exp(to_hip_type(output_ptr[row_start]));
for(std::size_t j = 1; j < n_dims; ++j)
{
auto ind = row_start + j;
batch_sum += ::exp(to_hip_type(output_ptr[ind]));
}
batch_sum = ::log(to_hip_type(batch_sum));
for(std::size_t j = 0; j < num_in_batch; ++j)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
}
for(std::size_t j = 0; j < n_dims; ++j)
{
auto ind = row_start + j;
output_ptr[ind] -= batch_sum;
}
auto batch_sum = ::exp(to_hip_type(output_ptr[desc_data.linear(batch_idx)]));
for(std::size_t j = 1; j < num_in_batch; ++j)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
batch_sum += ::exp(to_hip_type(output_ptr[idx]));
}
batch_sum = ::log(to_hip_type(batch_sum));
for(std::size_t j = 0; j < num_in_batch; ++j)
{
data_idx[axis] = j;
size_t idx = desc_data.linear(data_idx);
output_ptr[idx] -= batch_sum;
}
});
});
});
......
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/softmax.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/hip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
argument softmax(hipStream_t stream,
const migraphx::shape& output_shape,
std::vector<migraphx::argument> args,
int axis)
{
auto lens = output_shape.lens();
auto batch_lens = lens;
size_t n_dims = lens[axis];
batch_lens[axis] = 1;
migraphx::shape batch_shape{shape::int32_type, batch_lens};
visit_all(args.back(), args.front())([&](auto output, auto input) {
const auto* input_ptr = device_cast(input.data());
auto* output_ptr = device_cast(output.data());
visit_tensor_size(batch_shape.lens().size(), [&](auto n_dim) {
hip_tensor_descriptor<n_dim> desc_batch(batch_shape);
hip_tensor_descriptor<n_dim> desc_data(output_shape);
// each thread is for one item in the batch
gs_launch(stream, batch_shape.elements())([=](auto i) {
auto batch_idx = desc_batch.multi(i);
auto data_idx = batch_idx;
// get max
auto batch_max = input_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
{
data_idx[axis] = j;
batch_max = std::max(to_hip_type(batch_max),
to_hip_type(input_ptr[desc_data.linear(data_idx)]));
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = input_ptr[idx] - batch_max;
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = exp(to_hip_type(output_ptr[idx]));
}
auto batch_sum = output_ptr[desc_data.linear(batch_idx)];
for(std::size_t j = 1; j < n_dims; ++j)
{
data_idx[axis] = j;
batch_sum += output_ptr[desc_data.linear(data_idx)];
}
for(std::size_t j = 0; j < n_dims; ++j)
{
data_idx[axis] = j;
auto idx = desc_data.linear(data_idx);
output_ptr[idx] = output_ptr[idx] / batch_sum;
}
});
});
});
return args.back();
}
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -13,6 +13,13 @@ struct context;
struct miopen_abs
{
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ad.get(), f);
}
std::string name() const { return "gpu::abs"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
......@@ -13,6 +13,13 @@ struct context;
struct miopen_batch_norm_inference
{
op::batch_norm_inference op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::batch_norm_inference"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
#ifndef MIGRAPHX_GUARD_RTGLIB_CLIP_HPP
#define MIGRAPHX_GUARD_RTGLIB_CLIP_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/clip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct hip_clip
{
op::clip op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::clip"; }
shape compute_shape(std::vector<shape> inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -14,6 +14,12 @@ struct hip_concat
{
op::concat op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::concat"; }
shape compute_shape(std::vector<shape> inputs) const;
argument
......
......@@ -13,6 +13,13 @@ struct context;
struct miopen_contiguous
{
op::contiguous op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::contiguous"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument compute(context&, shape output_shape, const std::vector<argument>& args) const;
......
#ifndef MIGRAPHX_GUARD_RTGLIB_CONVERT_HPP
#define MIGRAPHX_GUARD_RTGLIB_CONVERT_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/gpu/oper.hpp>
#include <migraphx/gpu/device/convert.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct hip_convert : unary_device<hip_convert, device::convert>
{
op::convert op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
hip_convert(op::convert oper) : op(oper) {}
shape compute_shape(std::vector<shape> inputs) const
{
inputs.pop_back();
check_shapes{inputs}.packed();
return op.compute_shape(inputs);
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_CLIP_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_CLIP_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void clip(hipStream_t stream, const argument& result, const argument& arg1, float max, float min);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_CONVERT_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_CONVERT_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void convert(hipStream_t stream, const argument& result, const argument& arg);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_SOFTMAX_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
argument softmax(hipStream_t stream,
const migraphx::shape& output_shape,
std::vector<migraphx::argument> args,
int axis);
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -13,6 +13,13 @@ struct context;
struct miopen_elu
{
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ad.get(), f);
}
std::string name() const { return "gpu::elu"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
......@@ -14,6 +14,13 @@ struct context;
struct hip_gather
{
op::gather op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::gather"; }
shape compute_shape(std::vector<shape> inputs) const;
argument
......
......@@ -13,6 +13,13 @@ struct context;
struct miopen_gemm
{
op::dot op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::gemm"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
......@@ -28,6 +28,13 @@ struct hip_allocate
{
shape s;
std::string tag{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.s, "shape"), f(self.tag, "tag"));
}
std::string name() const { return "hip::allocate"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
......@@ -43,6 +50,13 @@ struct hip_allocate
struct hip_sync
{
std::string tag{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.tag, "tag"));
}
std::string name() const { return "hip::sync"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
......
......@@ -13,6 +13,13 @@ struct context;
struct miopen_leaky_relu
{
shared<activation_descriptor> ad;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ad.get(), f);
}
std::string name() const { return "gpu::leaky_relu"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
......@@ -25,6 +25,13 @@ namespace gpu {
struct hip_logsoftmax
{
op::logsoftmax op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::logsoftmax"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
......@@ -13,6 +13,13 @@ struct context;
struct miopen_lrn
{
shared<lrn_descriptor> ldesc;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return gpu::reflect(self.ldesc.get(), f);
}
std::string name() const { return "gpu::lrn"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment