Commit aaeaa6e3 authored by Ted Themistokleous's avatar Ted Themistokleous
Browse files

Generate empty onnx constants to test ops in onnxruntime.

parent cb4bf2bf
......@@ -6790,6 +6790,122 @@ def sub_scalar_test():
return ([arg_const, node], [arg_node], [arg_out])
@onnx_test
def sub_empty_scalar_test():
values = np.array([])
arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[2, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[2, 3, 4, 5])
values_tensor = helper.make_tensor(name='const',
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float))
arg_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['arg_const'],
value=values_tensor,
)
node = onnx.helper.make_node(
'Sub',
inputs=['0', 'arg_const'],
outputs=['out'],
)
return ([arg_const, node], [arg_node], [arg_out])
@onnx_test
def mul_empty_scalar_test():
values = np.array([])
arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[2, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[2, 3, 4, 5])
values_tensor = helper.make_tensor(name='const',
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float))
arg_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['arg_const'],
value=values_tensor,
)
node = onnx.helper.make_node(
'Mul',
inputs=['0', 'arg_const'],
outputs=['out'],
)
return ([arg_const, node], [arg_node], [arg_out])
@onnx_test
def add_empty_scalar_test():
values = np.array([])
arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[2, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[2, 3, 4, 5])
values_tensor = helper.make_tensor(name='const',
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float))
arg_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['arg_const'],
value=values_tensor,
)
node = onnx.helper.make_node(
'Add',
inputs=['0', 'arg_const'],
outputs=['out'],
)
return ([arg_const, node], [arg_node], [arg_out])
@onnx_test
def div_empty_scalar_test():
values = np.array([])
arg_node = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[2, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[2, 3, 4, 5])
values_tensor = helper.make_tensor(name='const',
data_type=TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float))
arg_const = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['arg_const'],
value=values_tensor,
)
node = onnx.helper.make_node(
'Div',
inputs=['arg_const', '0'],
outputs=['out'],
)
return ([arg_const, node], [arg_node], [arg_out])
@onnx_test
def sum_int_test():
a = helper.make_tensor_value_info('0', TensorProto.INT16, [3])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment