Commit a9dd42f7 authored by Umang Yadav's avatar Umang Yadav
Browse files

port gpu changes

parent 9e6d866d
......@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
const std::vector<shape>& inputs,
const std::vector<std::size_t>& sizes)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(std::all_of(
inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; }))
return {1, axis};
......@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
vectorize vectorize::elements(context& ctx, std::size_t axis, const std::vector<shape>& inputs)
{
// disable vectorization for fp8 types
if(std::any_of(inputs.begin(), inputs.end(), [&](auto ishape) {
return ishape.type() == migraphx::shape::fp8e4m3fnuz_type;
}))
return {1, axis};
if(inputs.empty())
return {1, axis};
std::size_t n = std::max_element(inputs.begin(),
......@@ -305,7 +315,7 @@ std::string generate_reduce(const module& m, const std::string& name)
std::transform(
params.begin(), params.end(), params.begin(), [](auto s) { return "auto " + s; });
return interpolate_string(inner_template,
{{"inner", inner_name},
{{"inner", inner_name},
{"params", join_strings(params, ", ")},
{"args", join_strings(args, ", ")},
{"call", call_function}});
......
......@@ -199,7 +199,7 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr
{
hiprtc_program prog(std::move(srcs));
auto options = split_string(params, ' ');
options.push_back("-DMIGRAPHX_USE_HIPRTC=1");
options.push_back("-DMIGRAPHX_JIT_USE_HIPRTC=1");
// remove following three compilation flags for HIPRTC once fixes from hipRTC are available in
if(enabled(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS{}))
{
......@@ -251,21 +251,10 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
std::cout << std::string(src.content) << std::endl;
}
}
auto fname = fs::path{"migraphx-hiprtc-driver"};
#ifdef _WIN32
fname.replace_extension(".exe");
#endif
auto p = dynamic_loader::path(&compile_hip_src_with_hiprtc);
auto driver = p.parent_path() / fname;
bool found = fs::exists(driver);
if(not found)
{
driver = p.parent_path().parent_path() / "bin" / fname;
found = fs::exists(driver);
}
auto driver = p.parent_path().parent_path() / "bin" / "migraphx-hiprtc-driver";
if(found)
if(fs::exists(driver))
{
value v;
v["srcs"] = to_value(hsrcs);
......
......@@ -197,6 +197,7 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
options.params += " -DMIGRAPHX_NGLOBAL=" + std::to_string(options.global);
options.params += " -DMIGRAPHX_NLOCAL=" + std::to_string(options.local);
options.params += " -D__HIP_NO_F8_CONVERSIONS__=1";
options.params += " " + join_strings(compiler_warnings(), " ");
options.params += " -ftemplate-backtrace-limit=0";
options.params += " -Werror";
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#define MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
namespace migraphx {
template <typename To, typename From>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
return __builtin_bit_cast(To, fr);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_FLOAT8_HPP
#define MIGRAPHX_GUARD_KERNELS_FLOAT8_HPP
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
#pragma clang diagnostic ignored "-Wfloat-equal"
#pragma clang diagnostic ignored "-Wmacro-redefined"
#pragma clang diagnostic ignored "-Wc++20-extensions"
#endif // __clang__
#if(defined(__HIP_PLATFORM_HCC__) || defined(__HIP_PLATFORM_AMD__))
// need to include hip_runtime.h otherwise it complains about __host__ and __device__
#if defined(MIGRAPHX_JIT_USE_HIPRTC)
#include <migraphx/kernels/hip.hpp>
#else
#include <hip/hip_runtime.h>
#endif
#define MIGRAPHX_HIP_HOST_DEVICE __host__ __device__
#define MIGRAPHX_HIP_HOST __host__
#else
#define MIGRAPHX_HIP_HOST_DEVICE
#define MIGRAPHX_HIP_HOST
#endif // HIP_PLATFORM_AMD
#define MIGRAPHX_HIP_DEVICE __device__
#ifndef MIGRAPHX_FP8_FNUZ
#define MIGRAPHX_FP8_FNUZ true
#endif // MIGRAPHX_FP8_FNUZ
// We are clipping in down conversion by default
#define MIGRAPHX_F8_DOWNCAST_CLIPPING 1
#if defined(MIGRAPHX_JIT_USE_HIPRTC)
#include <migraphx/kernels/types.hpp>
using uint8_t = migraphx::uint8_t;
using uint16_t = migraphx::uint16_t;
using uint32_t = migraphx::uint32_t;
#else
#include <cmath>
#include <cstdint>
#include <climits>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <sstream>
#include <iostream>
#include <string>
#include <utility>
#endif
#include <migraphx/kernels/float8_impl.hpp>
namespace migraphx {
namespace fp8 {
enum class rounding_mode
{
standard, // standard rounding is doing RNE -- round to nearest even
stochastic
};
enum class f8_type
{
bf8 = 0, // s1e5m2
fp8 = 1 // s1e4m3
};
template <typename T>
class numeric_limits;
template <migraphx::fp8::f8_type T = migraphx::fp8::f8_type::fp8>
struct float8
{
uint8_t data;
// default constructor
MIGRAPHX_HIP_HOST_DEVICE constexpr float8() = default;
// default copy constructor
MIGRAPHX_HIP_HOST_DEVICE constexpr float8(const float8<T>& y) = default;
struct from_bits_t
{
};
static constexpr MIGRAPHX_HIP_HOST_DEVICE from_bits_t from_bits() { return from_bits_t(); }
MIGRAPHX_HIP_HOST_DEVICE explicit constexpr float8(uint8_t bits, from_bits_t) : data(bits) {}
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// device specific optimized F8 down-conversion code
template <bool stochastic_rounding = false>
static MIGRAPHX_HIP_DEVICE uint8_t cast_to_f8_from_f32(float v, uint32_t rng = 0)
{
uint8_t i8data;
union
{
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
#ifdef MIGRAPHX_F8_DOWNCAST_CLIPPING
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
if((val.i32val & 0x7F800000) != 0x7F800000) /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
}
else
{
if((val.i32val & 0x7F800000) != 0x7F800000) // propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
}
#endif
if(stochastic_rounding)
{
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
ival = __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0); // 0 pos
}
else
{
ival = __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
}
}
else // RNE CVT
{
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
ival = __builtin_amdgcn_cvt_pk_fp8_f32(
val.fval, val.fval, ival, false); // false -> WORD0
}
else
{
ival = __builtin_amdgcn_cvt_pk_bf8_f32(
val.fval, val.fval, ival, false); // false -> WORD0}
}
}
val.i32val = ival;
i8data = val.i8val[0]; // little endian
return i8data;
}
#endif // __gfx940__
// constructor from float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// NOTE: ON-DEVICE... always optimal bias
explicit MIGRAPHX_HIP_DEVICE
float8(float v,
migraphx::fp8::rounding_mode rm = migraphx::fp8::rounding_mode::standard,
uint32_t rng = 0)
{
// runtime branch, use cast_to_f8_from_f32 if want to avoid it
if(rm == migraphx::fp8::rounding_mode::stochastic)
data = cast_to_f8_from_f32<true>(v, rng);
else
data = cast_to_f8_from_f32<false>(v);
}
// Host only implementation using s/w simulation
explicit MIGRAPHX_HIP_HOST
#else
// both Host and DEVICE for non-gfx940 using s/w simulation
explicit constexpr MIGRAPHX_HIP_HOST_DEVICE
#endif
float8(float v,
migraphx::fp8::rounding_mode rm = migraphx::fp8::rounding_mode::standard,
uint32_t rng = 0)
{
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
#ifdef MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx::fp8::impl::
cast_to_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, true /*clip*/>(
v, (rm == migraphx::fp8::rounding_mode::stochastic), rng);
#else // MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx::fp8::impl::
cast_to_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, false /*clip*/>(
v, (rm == migraphx::fp8::rounding_mode::stochastic), rng);
#endif // MIGRAPHX_F8_DOWNCAST_CLIPPING
}
else
{
#ifdef MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx::fp8::impl::
cast_to_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, true /*clip*/>(
v, (rm == migraphx::fp8::rounding_mode::stochastic), rng);
#else // MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx::fp8::impl::
cast_to_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, false /*clip*/>(
v, (rm == migraphx::fp8::rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping}
}
}
/*
// Constructor from half
explicit constexpr MIGRAPHX_HIP_HOST_DEVICE
float8(migraphx::half v,
migraphx::fp8::rounding_mode rm =
migraphx::fp8::rounding_mode::standard,
uint32_t rng = 0)
: float8((float)v, rm, rng)
{
}
// constructor from int
explicit constexpr MIGRAPHX_HIP_HOST_DEVICE
float8(int v,
migraphx::fp8::rounding_mode rm =
migraphx::fp8::rounding_mode::standard,
uint32_t rng = 0)
: float8((float)v, rm, rng)
{
}
// constructor from double
explicit constexpr MIGRAPHX_HIP_HOST_DEVICE
float8(double v,
migraphx::fp8::rounding_mode rm =
migraphx::fp8::rounding_mode::standard,
uint32_t rng = 0)
: float8((float)v, rm, rng)
{
}
*/
/**/
// convert to float
// #if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
#if 0 // need constexpr operator(). This version can't be constexpr
// upcast using device specific intrinsic
inline MIGRAPHX_HIP_DEVICE operator float() const
{
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
}
else
{
asm volatile("v_cvt_f32_bf8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
}
return fval;
}
inline constexpr MIGRAPHX_HIP_HOST operator float() const
#else // non gfx940
inline constexpr MIGRAPHX_HIP_HOST_DEVICE operator float() const
#endif
{
if constexpr(T == migraphx::fp8::f8_type::fp8)
{
return migraphx::fp8::impl::
cast_from_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/>(data);
} // else
return migraphx::fp8::impl::
cast_from_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/>(data);
}
/*
// convert to half
explicit inline MIGRAPHX_HIP_HOST_DEVICE operator migraphx::half() const
{
return migraphx::half(float(*this)); // convert to float, then convert to f16
}
*/
// check for zero
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool is_zero() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x00;
}
else
{
return (data == 0x00) || (data == 0x80);
}
}
// check for nan
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool is_nan() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x80;
}
else
{
if(T == migraphx::fp8::f8_type::bf8)
{
return (data == 0x7d) || (data == 0x7e) || (data == 0x7f) || (data == 0xfd) ||
(data == 0xfe) || (data == 0xff);
}
else
{
return (data == 0x79) || (data == 0x7a) || (data == 0x7b) || (data == 0x7c) ||
(data == 0x7d) || (data == 0x7e) || (data == 0x7f) || (data == 0xf9) ||
(data == 0xfa) || (data == 0xfb) || (data == 0xfc) || (data == 0xfd) ||
(data == 0xfe) || (data == 0xff);
}
}
}
// check for inf
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool is_inf() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x80;
}
else
{
if(T == migraphx::fp8::f8_type::bf8)
{
return (data == 0x7c) || (data == 0xfc);
}
else
{
return (data == 0x78) || (data == 0xf8);
}
}
}
#define MIGRAPHX_FP8_UNARY_OP(unary_op, binary_op) \
constexpr float8& MIGRAPHX_HIP_HOST_DEVICE operator unary_op(const float8& rhs) \
{ \
const auto tmp = static_cast<float>(*this) binary_op static_cast<float>(rhs); \
*this = static_cast<float8>(tmp); \
return *this; \
} \
constexpr float8& MIGRAPHX_HIP_HOST_DEVICE operator unary_op(const float& rhs) \
{ \
const auto tmp = static_cast<float>(*this) binary_op static_cast<float>(rhs); \
*this = static_cast<float8>(tmp); \
return *this; \
}
MIGRAPHX_FP8_UNARY_OP(*=, *)
MIGRAPHX_FP8_UNARY_OP(-=, -)
MIGRAPHX_FP8_UNARY_OP(+=, +)
MIGRAPHX_FP8_UNARY_OP(/=, /)
inline MIGRAPHX_HIP_HOST_DEVICE constexpr float8& operator=(const float8& rhs) = default;
inline MIGRAPHX_HIP_HOST_DEVICE constexpr float8& operator=(float8&& rhs) = default;
#if !defined(__HIP_NO_F8_CONVERSIONS__)
// for the device kernels, this needs to be disabled since implicit_conversion op can type cast
// any type to any other type and that results in conflicts in candidate overload resolutions.
inline constexpr float8& MIGRAPHX_HIP_HOST_DEVICE operator=(float rhs)
{
*this = static_cast<float8>(rhs);
return *this;
}
#endif
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool operator==(const float8& rhs) const
{
if((rhs.is_zero() && this->is_zero()) ||
(fabs(rhs - *this) < migraphx::fp8::numeric_limits<float8<T>>::epsilon()))
return true;
else if(rhs.is_nan() || rhs.is_inf() || this->is_nan() || this->is_inf())
return false;
return false;
}
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool operator<(const float8& rhs) const
{
const auto we = static_cast<float>(*this);
const auto them = static_cast<float>(rhs);
return we < them;
}
inline MIGRAPHX_HIP_HOST_DEVICE constexpr bool operator>(const float8& rhs) const
{
const auto we = static_cast<float>(*this);
const auto them = static_cast<float>(rhs);
return we > them;
}
};
#ifndef MIGRAPHX_JIT_USE_HIPRTC
// Special operator overloading
template <migraphx::fp8::f8_type T>
inline std::ostream& operator<<(std::ostream& os, const migraphx::fp8::float8<T>& rhs)
{
return os << static_cast<float>(rhs);
}
#endif
// NOLINTNEXTLINE
#define MIGRAPHX_FP8_BINARY_OP(binary_op, U) \
template <migraphx::fp8::f8_type T> \
inline constexpr U MIGRAPHX_HIP_HOST_DEVICE operator binary_op( \
const migraphx::fp8::float8<T>& lhs, const migraphx::fp8::float8<T>& rhs) \
{ \
return U(static_cast<float>(lhs) binary_op static_cast<float>(rhs)); \
}
// TODO: these should return floats
MIGRAPHX_FP8_BINARY_OP(*, migraphx::fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(-, migraphx::fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(/, migraphx::fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(+, migraphx::fp8::float8<T>)
// TODO: Comparison ops shouldn't convert to float, maybe need to take care of rounding effects.
MIGRAPHX_FP8_BINARY_OP(==, bool)
MIGRAPHX_FP8_BINARY_OP(>=, bool)
MIGRAPHX_FP8_BINARY_OP(<=, bool)
MIGRAPHX_FP8_BINARY_OP(>, bool)
MIGRAPHX_FP8_BINARY_OP(<, bool)
MIGRAPHX_FP8_BINARY_OP(!=, bool)
template <migraphx::fp8::f8_type T>
inline MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<T> fabs(migraphx::fp8::float8<T> v)
{
v.data = v.data & 0x7f;
return v;
}
template <class T>
MIGRAPHX_HIP_HOST_DEVICE constexpr T F8_Max()
{
return T{0x7F, T::from_bits()};
}
template <class T>
MIGRAPHX_HIP_HOST_DEVICE constexpr T F8_Lowest()
{
return T{0xFF, T::from_bits()};
}
using fp8e4m3fnuz = float8<migraphx::fp8::f8_type::fp8>;
template <>
class numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>
{
public:
// TODO :figure out epsilon in Hex to make it constexpr
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>
epsilon()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>(
0x28, migraphx::fp8::float8<>::from_bits());
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>
quiet_NaN()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7F, migraphx::fp8::float8<>::from_bits());
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>
max()
{
return migraphx::fp8::F8_Max<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>();
}
// TODO figure out Hex value
static MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8> min()
{
return static_cast<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>(-1.0f) *
migraphx::fp8::F8_Max<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>();
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>
lowest()
{
return migraphx::fp8::F8_Lowest<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>();
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>
infinity()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7F, migraphx::fp8::float8<>::from_bits());
}
};
template <>
class numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>
{
public:
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>
epsilon()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>(
0x34, migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>::from_bits());
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>
quiet_NaN()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7d,
migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>::from_bits());
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>
max()
{
return static_cast<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>(
migraphx::fp8::F8_Max<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>());
}
// TODO figure out constexpr value
static MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8> min()
{
return static_cast<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>(float(-1.0f)) *
migraphx::fp8::F8_Max<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>();
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>
lowest()
{
return migraphx::fp8::F8_Lowest<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>();
}
static constexpr MIGRAPHX_HIP_HOST_DEVICE migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>
infinity()
{
return migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7c,
migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>::from_bits());
}
};
/*
// Use h/w intrinsic and optimized version when __gfx940__
template <typename T,
typename Ta,
bool stochastic_rounding,
typename std::enable_if<(!(migraphx::is_same<T, Ta>{}) &&
(migraphx::is_same<T, migraphx_f8>{} ||
migraphx::is_same<T, migraphx_bf8>{})),
int>::type = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// NOTE: we are directly calling cast_to_f8_from_f32 instead of constructor to optimize
// away one runtime branch
T val;
if(migraphx::is_same<T, migraphx_f8>::value)
val.data = migraphx_f8::cast_to_f8_from_f32<stochastic_rounding>(float(a), rng);
else
val.data = migraphx_bf8::cast_to_bf8_from_f32<stochastic_rounding>(float(a), rng);
return val;
#else // non gfx940
return T(float(a),
stochastic_rounding ? migraphx::fp8::rounding_mode::stochastic
: migraphx::fp8::rounding_mode::standard,
rng);
#endif // __gfx940__
}
// NOTE NOTE: The above code is good if we don't consider HIP-GEMM code and only consider
// the quantization However, if we need HIP-GEMM for fall-back, we would need explicit_cast
// handles Tacc=f32 to To=f16/bf16 conversion
template <typename T,
typename Ta,
bool stochastic_rounding,
typename std::enable_if<(!(migraphx::is_same<T, Ta>{}) &&
!(migraphx::is_same<T, migraphx_f8>{} ||
migraphx::is_same<T, migraphx_bf8>{})),
int>::type = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
// the return type is not a F8 types, no SR for those types
// not sure if we have direct conversion, so converting to float first
// no effect if the input type is float
return T(float(a));
}
*/
} // namespace fp8
} // namespace migraphx
// define numeric limits for the new data type
#ifndef MIGRAPHX_JIT_USE_HIPRTC
namespace std {
inline bool isfinite(migraphx::fp8::float8<migraphx::fp8::f8_type::fp8> x) // NOLINT
{
return x.is_inf();
}
inline bool isfinite(migraphx::fp8::float8<migraphx::fp8::f8_type::bf8> x) // NOLINT
{
return x.is_inf();
}
inline bool isnan(migraphx::fp8::float8<migraphx::fp8::f8_type::fp8> x) // NOLINT
{
return x.is_nan();
}
inline bool isnan(migraphx::fp8::float8<migraphx::fp8::f8_type::bf8> x) // NOLINT
{
return x.is_nan();
}
template <>
class numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>
: public migraphx::fp8::numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::fp8>>
{
};
template <>
class numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>
: public migraphx::fp8::numeric_limits<migraphx::fp8::float8<migraphx::fp8::f8_type::bf8>>
{
};
template <class T>
struct common_type<migraphx::fp8::fp8e4m3fnuz, T> : std::common_type<float, T> // NOLINT
{
};
template <class T>
struct common_type<T, migraphx::fp8::fp8e4m3fnuz> : std::common_type<float, T> // NOLINT
{
};
template <>
struct common_type<migraphx::fp8::fp8e4m3fnuz, migraphx::fp8::fp8e4m3fnuz>
{
using type = float;
};
} // namespace std
#endif
// =================================================================================================
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_KERNELS_FLOAT8_HPP
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#define MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
#define CONST_FOLD(x) (__builtin_constant_p(x) ? (x) : (x))
namespace migraphx {
namespace detail {
template <bool B, class T, class F>
struct conditional
{
using type = T;
};
template <class T, class F>
struct conditional<false, T, F>
{
using type = F;
};
template <typename To, typename From>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
#if defined(__GNUC__) and !defined(__clang__)
To x = CONST_FOLD(*reinterpret_cast<To*>(&fr));
#else
To x = __builtin_bit_cast(To, fr);
#endif
return x;
}
} // namespace detail
namespace fp8 {
namespace impl {
// #ifdef __HIP_PLATFORM_HCC__
// __device__ inline int clz(uint32_t x) { return __clz(x); }
// #else
// __host__ inline int clz(uint32_t x) { return __builtin_clz(x); }
// #endif
template <int wm, int we, typename T, bool negative_zero_nan, bool clip>
MIGRAPHX_HIP_HOST_DEVICE constexpr uint8_t cast_to_f8(T _x, bool stoch, uint32_t rng)
{
static_assert(wm + we == 7, "wm+we==7");
const int mfmt = (sizeof(T) == 4) ? 23 : 10;
typename migraphx::detail::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type x;
if constexpr(sizeof(T) == 4)
x = migraphx::detail::bit_cast<uint32_t>(_x);
else
x = migraphx::detail::bit_cast<uint16_t>(_x);
uint32_t head, mantissa;
int exponent, bias;
uint32_t sign;
if constexpr(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << we) - 1) << wm);
// Deal with inf and NaNs
if(negative_zero_nan)
{
if(sizeof(T) == 4)
{
if((x & 0x7F800000) == 0x7F800000)
return 0x80;
}
else
{
// if(__hisinf(x) || __hisnan(x))
if((x & 0x7C00) == 0x7C00)
return 0x80;
}
}
else
{
if(sizeof(T) == 4)
{
if((x & 0x7F800000) == 0x7F800000)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
else
{
if((x & 0x7C00) == 0x7C00)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
}
// handle positive zero
if(x == 0)
return 0;
// handle negative zero
if((sizeof(T) == 4 and x == 0x80000000) or (sizeof(T) == 2 and x == 0x8000))
{
if(negative_zero_nan)
{
return 0;
}
else
{
return 0x80;
}
}
// First need to check if it is normal or denorm as there is a difference of implict 1
// Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
// The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
// RNE, no need to add rng. Then probably need to check whether there is carry and adjust
// exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent bits
const int f8_bias = (1 << (we - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if(exponent == 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal has
exponent bias 15 while bf8 with NANOO has exponent bias 16. It means that there are some numbers in
fp16 denormal but they are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8 (NANOO) normal. In
this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff =
0; // exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1 << (mfmt - wm + exponent_diff)) - 1)) ==
(1 << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - wm)) - 1;
bool odd =
mantissa & (1 << (mfmt - wm)); // if the least significant bit that is not truncated is 1
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0)
{
if((1 << mfmt) & mantissa)
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
}
else
{
if((1 << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - (negative_zero_nan ? 1 : 2);
if(f8_exponent > max_exp)
{
if(clip)
{
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
}
else
{
return signed_inf;
}
}
if(f8_exponent == 0 && mantissa == 0)
return negative_zero_nan ? 0 : (sign << 7);
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
template <int wm, int we, typename T, bool negative_zero_nan>
MIGRAPHX_HIP_HOST_DEVICE constexpr T cast_from_f8(uint8_t x)
{
constexpr int weo = 8;
constexpr int wmo = 23;
T fInf, fNegInf, fNaN, fNeg0;
uint32_t ifInf = 0x7F800000;
uint32_t ifNegInf = 0xFF800000;
uint32_t ifNaN = 0x7F800001;
uint32_t ifNeg0 = 0x80000000;
// TODO: need to change T for half but right now it would never called with half
fInf = migraphx::detail::bit_cast<float>(ifInf);
fNegInf = migraphx::detail::bit_cast<float>(ifNegInf);
fNaN = migraphx::detail::bit_cast<float>(ifNaN);
fNeg0 = migraphx::detail::bit_cast<float>(ifNeg0);
if(x == 0)
return 0;
uint32_t sign = x >> 7;
uint32_t mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if(negative_zero_nan)
{
if(x == 0x80)
return fNaN;
}
else
{
if(x == 0x80)
return fNeg0;
if(exponent == ((1 << we) - 1))
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
typename migraphx::detail::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type retval;
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (negative_zero_nan ? 1 : 0);
// subnormal input
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __builtin_clz(mantissa) - (32 - wm);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa;
else
retval = (sign << 31) | (exponent << 23) | mantissa;
return migraphx::detail::bit_cast<T>(retval);
}
} // namespace impl
} // namespace fp8
} // namespace migraphx
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
......@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_KERNELS_HIP_HPP
#define MIGRAPHX_GUARD_KERNELS_HIP_HPP
#ifndef MIGRAPHX_USE_HIPRTC
#ifndef MIGRAPHX_JIT_USE_HIPRTC
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
#include <hip/math_functions.h>
......
......@@ -34,6 +34,9 @@ namespace migraphx {
namespace math {
constexpr float as_float(migraphx::half x) { return x; }
constexpr float as_float(migraphx::fp8::fp8e4m3fnuz x) { return x; }
template <class T>
constexpr T as_float(T x)
{
......@@ -57,14 +60,14 @@ constexpr T as_float(T x)
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FOR(type, name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(type x, Ts... xs)->type \
auto __device__ name(type x, Ts... xs) -> type \
{ \
return fname(x, xs...); \
}
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_BINARY_FOR(type, name, fname) \
inline auto __device__ name(type x, type y)->type { return fname(x, y); }
inline auto __device__ name(type x, type y) -> type { return fname(x, y); }
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_HALF(name, fname) \
......@@ -72,6 +75,20 @@ constexpr T as_float(T x)
auto __device__ name(migraphx::half x, Ts... xs) \
MIGRAPHX_RETURNS(fname(math::as_float(x), math::as_float(xs)...))
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FP8(name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(migraphx::fp8::fp8e4m3fnuz x, Ts... xs) MIGRAPHX_RETURNS( \
migraphx::fp8::fp8e4m3fnuz(fname(math::as_float(x), math::as_float(xs)...)))
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_BINARY_FOR_FP8(name, fname) \
inline auto __device__ name(migraphx::fp8::fp8e4m3fnuz x, migraphx::fp8::fp8e4m3fnuz y) \
-> migraphx::fp8::fp8e4m3fnuz \
{ \
return migraphx::fp8::fp8e4m3fnuz(fname(math::as_float(x), math::as_float(y))); \
}
// Template with two overloads for math functions, one for half2 type and one for more generic
// <half, N> vectorization where N is 4 or another even number.
......@@ -162,6 +179,33 @@ MIGRAPHX_DEVICE_MATH_HALF(tan, ::tan)
MIGRAPHX_DEVICE_MATH_HALF(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH_HALF(fmod, ::fmod)
// use float to compute fp8 overload
MIGRAPHX_DEVICE_MATH_FP8(abs, ::abs)
MIGRAPHX_DEVICE_MATH_FP8(acos, ::acos)
MIGRAPHX_DEVICE_MATH_FP8(acosh, ::acosh)
MIGRAPHX_DEVICE_MATH_FP8(asin, ::asin)
MIGRAPHX_DEVICE_MATH_FP8(asinh, ::asinh)
MIGRAPHX_DEVICE_MATH_FP8(atan, ::atan)
MIGRAPHX_DEVICE_MATH_FP8(atanh, ::atanh)
MIGRAPHX_DEVICE_MATH_FP8(ceil, ::ceil)
MIGRAPHX_DEVICE_MATH_FP8(cos, ::cos)
MIGRAPHX_DEVICE_MATH_FP8(cosh, ::cosh)
MIGRAPHX_DEVICE_MATH_FP8(erf, ::erf)
MIGRAPHX_DEVICE_MATH_FP8(exp, ::exp)
MIGRAPHX_DEVICE_MATH_FP8(floor, ::floor)
MIGRAPHX_DEVICE_MATH_FP8(isnan, ::isnan)
MIGRAPHX_DEVICE_MATH_FP8(log, ::log)
MIGRAPHX_DEVICE_MATH_FP8(pow, ::pow)
MIGRAPHX_DEVICE_MATH_FP8(remainder, ::remainder)
MIGRAPHX_DEVICE_MATH_FP8(round, ::round)
MIGRAPHX_DEVICE_MATH_FP8(rsqrt, ::rsqrt)
MIGRAPHX_DEVICE_MATH_FP8(sin, ::sin)
MIGRAPHX_DEVICE_MATH_FP8(sinh, ::sinh)
MIGRAPHX_DEVICE_MATH_FP8(sqrt, ::sqrt)
MIGRAPHX_DEVICE_MATH_FP8(tan, ::tan)
MIGRAPHX_DEVICE_MATH_FP8(tanh, ::tanh)
MIGRAPHX_DEVICE_MATH_FP8(fmod, ::fmod)
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// packed into a 32-bit number. See include/hip/amd_detail/hip_fp16_math_fwd.h for the HIP names
......@@ -195,6 +239,9 @@ MIGRAPHX_DEVICE_MATH_BINARY_FOR(double, min, ::min)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, max, ::__hmax)
MIGRAPHX_DEVICE_MATH_BINARY_FOR(migraphx::half, min, ::__hmin)
MIGRAPHX_DEVICE_MATH_BINARY_FOR_FP8(max, ::max)
MIGRAPHX_DEVICE_MATH_BINARY_FOR_FP8(min, ::min)
template <class T, MIGRAPHX_REQUIRES(not is_any_vec<T>())>
constexpr auto max(const T& a, const T& b)
{
......
......@@ -26,6 +26,7 @@
#include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/float8.hpp>
namespace migraphx {
......@@ -230,7 +231,8 @@ constexpr unsigned long int_max(unsigned long n)
template <class T,
MIGRAPHX_REQUIRES(is_integral<T>{} or is_floating_point<T>{} or
is_same<T, migraphx::half>{})>
is_same<T, migraphx::half>{} or
is_same<T, migraphx::fp8::fp8e4m3fnuz>{})>
constexpr T numeric_max()
{
if constexpr(is_integral<T>{})
......@@ -246,6 +248,8 @@ constexpr T numeric_max()
return __FLT_MAX__;
else if constexpr(is_same<T, migraphx::half>{})
return __FLT16_MAX__;
else if constexpr(is_same<T, migraphx::fp8::fp8e4m3fnuz>{})
return migraphx::fp8::F8_Max<T>();
else
return 0;
}
......@@ -260,6 +264,8 @@ constexpr T numeric_lowest()
else
return -numeric_max<T>() - 1;
}
else if constexpr(is_same<T, migraphx::fp8::fp8e4m3fnuz>{})
return migraphx::fp8::F8_Lowest<T>();
else
{
return -numeric_max<T>();
......
......@@ -23,12 +23,11 @@
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_KERNELS_TYPES_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_KERNELS_TYPES_HPP
#include <migraphx/kernels/hip.hpp>
namespace migraphx {
#if defined(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS) and defined(MIGRAPHX_USE_HIPRTC)
#if defined(MIGRAPHX_ENABLE_HIPRTC_WORKAROUNDS) and defined(MIGRAPHX_JIT_USE_HIPRTC)
using int8_t = signed char;
using uint8_t = unsigned char;
using int16_t = signed short;
......@@ -37,7 +36,7 @@ using int32_t = signed int;
using uint32_t = unsigned int;
using int64_t = signed long long;
using uint64_t = unsigned long long;
#elif defined(MIGRAPHX_USE_HIPRTC)
#elif defined(MIGRAPHX_JIT_USE_HIPRTC)
using int8_t = __hip_int8_t;
using uint8_t = __hip_uint8_t;
using int16_t = __hip_int16_t;
......@@ -55,7 +54,7 @@ using int32_t = std::int32_t;
using uint32_t = std::uint32_t;
using int64_t = std::int64_t;
using uint64_t = std::uint64_t;
#endif // MIGRAPHX_USE_HIPRTC
#endif // MIGRAPHX_JIT_USE_HIPRTC
using index_int = uint32_t;
using diff_int = int32_t;
......
......@@ -24,6 +24,7 @@
#ifndef MIGRAPHX_GUARD_KERNELS_VECTORIZE_HPP
#define MIGRAPHX_GUARD_KERNELS_VECTORIZE_HPP
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <migraphx/kernels/vec.hpp>
......
......@@ -98,6 +98,7 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
ctx.set_exhaustive_tune_flag(options.exhaustive_tune);
std::set<shape::type_t> unsupported_types(shape::types().begin(), shape::types().end());
unsupported_types.erase(shape::type_t::float_type);
unsupported_types.erase(shape::type_t::fp8e4m3fnuz_type);
unsupported_types.erase(shape::type_t::half_type);
unsupported_types.erase(shape::type_t::bool_type);
unsupported_types.erase(shape::type_t::int8_type);
......
......@@ -144,7 +144,7 @@ extern "C" {
__global__ void kernel(${type}* p)
{
auto x = *p;
*p = migraphx::implicit_conversion(migraphx::${invoke});
*p = implicit_conversion(migraphx::${invoke});
}
}
......@@ -348,18 +348,18 @@ TEST_CASE(compile_math)
auto vec_sizes = {2, 4, 6};
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
name.insert(0, "migraphx::");
data_types.push_back(name);
migraphx::transform(vec_sizes, std::back_inserter(data_types), [&](auto i) {
return "migraphx::vec<" + name + ", " + std::to_string(i) + ">";
});
if(t != migraphx::shape::fp8e4m3fnuz_type)
{
migraphx::transform(vec_sizes, std::back_inserter(data_types), [&](auto i) {
return "migraphx::vec<" + name + ", " + std::to_string(i) + ">";
});
}
}
migraphx::shape input{migraphx::shape::float_type, {5, 2}};
migraphx::gpu::hip_compile_options options;
......@@ -399,10 +399,7 @@ TEST_CASE(assert_type_min_max)
migraphx::gpu::hip_compile_options options;
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
......@@ -429,7 +426,6 @@ TEST_CASE(assert_type_min_max)
min = std::to_string(as.min());
max = std::to_string(as.max());
}
auto src = migraphx::interpolate_string(assert_template,
{{"type", name}, {"max", max}, {"min", min}});
migraphx::shape input{migraphx::shape::float_type, {5, 2}};
......
......@@ -27,14 +27,19 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_abs : verify_program<test_abs>
template <migraphx::shape::type_t DType>
struct test_abs : verify_program<test_abs<DType>>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {4, 3, 3, 3}});
auto x = mm->add_parameter("x", migraphx::shape{DType, {4, 3, 3, 3}});
mm->add_instruction(migraphx::make_op("abs"), x);
return p;
}
};
template struct test_abs<migraphx::shape::fp8e4m3fnuz_type>;
template struct test_abs<migraphx::shape::half_type>;
template struct test_abs<migraphx::shape::float_type>;
......@@ -27,15 +27,20 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_acos : verify_program<test_acos>
template <migraphx::shape::type_t DType>
struct test_acos : verify_program<test_acos<DType>>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {16}};
migraphx::shape s{DType, {16}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::make_op("acos"), x);
return p;
}
};
template struct test_acos<migraphx::shape::fp8e4m3fnuz_type>;
template struct test_acos<migraphx::shape::half_type>;
template struct test_acos<migraphx::shape::float_type>;
......@@ -27,16 +27,21 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_add : verify_program<test_add>
template <migraphx::shape::type_t DType>
struct test_add : verify_program<test_add<DType>>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {3}};
migraphx::shape s{DType, {8}};
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
mm->add_instruction(migraphx::make_op("add"), x, y);
return p;
}
};
template struct test_add<migraphx::shape::fp8e4m3fnuz_type>;
template struct test_add<migraphx::shape::half_type>;
template struct test_add<migraphx::shape::float_type>;
......@@ -35,7 +35,11 @@ struct test_literal_limits : verify_program<test_literal_limits<Q, T>>
migraphx::program p;
auto* mm = p.get_main_module();
auto input_s = migraphx::shape(Q, {3, 1});
auto infinity_val = std::numeric_limits<T>::infinity();
auto infinity_val = std::numeric_limits<T>::max();
if constexpr(std::numeric_limits<T>::has_infinity)
{
infinity_val = std::numeric_limits<T>::infinity();
}
std::vector<T> s_data{
infinity_val, static_cast<T>(-infinity_val), std::numeric_limits<T>::quiet_NaN()};
......@@ -52,3 +56,4 @@ template struct test_literal_limits<migraphx::shape::double_type, double>;
template struct test_literal_limits<migraphx::shape::half_type, migraphx::half>;
template struct test_literal_limits<migraphx::shape::int32_type, int32_t>;
template struct test_literal_limits<migraphx::shape::int8_type, int8_t>;
template struct test_literal_limits<migraphx::shape::fp8e4m3fnuz_type, migraphx::fp8::fp8e4m3fnuz>;
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment