Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
a6fa5e4b
Unverified
Commit
a6fa5e4b
authored
Oct 23, 2023
by
Chris Austen
Committed by
GitHub
Oct 23, 2023
Browse files
Merge branch 'develop' into enable_navi_32_ci
parents
b7a7cd3c
7604ecf5
Changes
247
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1122 additions
and
56 deletions
+1122
-56
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+1
-1
src/onnx/parse_qlinearadd.cpp
src/onnx/parse_qlinearadd.cpp
+154
-0
src/onnx/parse_qlinearconv.cpp
src/onnx/parse_qlinearconv.cpp
+241
-0
src/onnx/parse_qlinearglavgpool.cpp
src/onnx/parse_qlinearglavgpool.cpp
+151
-0
src/onnx/parse_qlinearmatmul.cpp
src/onnx/parse_qlinearmatmul.cpp
+198
-0
src/onnx/parse_reshape.cpp
src/onnx/parse_reshape.cpp
+16
-7
src/onnx/parse_resize.cpp
src/onnx/parse_resize.cpp
+2
-1
src/onnx/parse_shrink.cpp
src/onnx/parse_shrink.cpp
+85
-0
src/onnx/parse_spacetodepth.cpp
src/onnx/parse_spacetodepth.cpp
+1
-2
src/onnx/parse_trilu.cpp
src/onnx/parse_trilu.cpp
+4
-4
src/process.cpp
src/process.cpp
+167
-1
src/program.cpp
src/program.cpp
+2
-2
src/py/CMakeLists.txt
src/py/CMakeLists.txt
+14
-17
src/quantization.cpp
src/quantization.cpp
+5
-4
src/rewrite_quantization.cpp
src/rewrite_quantization.cpp
+18
-3
src/simplify_algebra.cpp
src/simplify_algebra.cpp
+22
-1
src/simplify_reshapes.cpp
src/simplify_reshapes.cpp
+23
-7
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
+15
-2
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
+2
-4
src/targets/cpu/include/migraphx/cpu/pointwise.hpp
src/targets/cpu/include/migraphx/cpu/pointwise.hpp
+1
-0
No files found.
src/onnx/parse_pooling.cpp
View file @
a6fa5e4b
...
@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
}
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads availab
l
e only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
return
values
;
...
...
src/onnx/parse_qlinearadd.cpp
0 → 100644
View file @
a6fa5e4b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearAdd in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearAdd
Performs element-wise binary addition on 8 bit data types (with Numpy-style broadcasting support).
C = (A_scale * (A - A_zero_point) + B_scale * (B - B_zero_point))/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
Inputs (7 - 8)
A : T
First operand.
A_scale : tensor(float)
Input A's scale. It's a scalar, which means a per-tensor/layer quantization.
A_zero_point (optional) : T
Input A zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
B : T
Second operand.
B_scale : tensor(float)
Input B's scale. It's a scalar, which means a per-tensor/layer quantization.
B_zero_point (optional) : T
Input B zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
C_scale : tensor(float)
Output scale. It's a scalar, which means a per-tensor/layer quantization.
C_zero_point (optional) : T
Output zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Outputs
C : T
Result, has same element type as two inputs
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit signed and unsigned tensors.
*/
struct
parse_qlinearadd
:
op_parser
<
parse_qlinearadd
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearAdd"
}};
}
// basic type checking for QLinearAdd Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
7
)
MIGRAPHX_THROW
(
"QLINEARADD: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
auto
sh_a
=
in_a
->
get_shape
();
auto
sh_b
=
in_b
->
get_shape
();
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARADD: unsupported input type"
);
if
(
type_a
!=
type_b
)
MIGRAPHX_THROW
(
"QLINEARADD: mismatched input types"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
// A
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_scale_a
=
args
[
1
];
const
auto
&
in_zero_pt_a
=
args
[
2
];
auto
dquant_a
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_a
,
in_scale_a
,
in_zero_pt_a
,
info
);
// B
const
auto
&
in_b
=
args
[
3
];
const
auto
&
in_scale_b
=
args
[
4
];
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
// C = A + B
auto
out_c
=
info
.
add_common_op
(
"add"
,
dquant_a
,
dquant_b
);
const
auto
&
in_scale_c
=
args
[
6
];
// zero_pt for C is supplied as the last optional argument..
if
(
args
.
size
()
==
8
)
return
(
bcast_qdq_instr
(
"quantizelinear"
,
out_c
,
in_scale_c
,
args
[
7
],
info
));
// if no zero_pt: just broadcast the scale..
auto
bcast_scale_c
=
bcast_scalar_instr
(
out_c
->
get_shape
(),
in_scale_c
,
info
);
return
(
info
.
add_instruction
(
migraphx
::
make_op
(
"quantizelinear"
),
out_c
,
bcast_scale_c
));
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinearconv.cpp
0 → 100644
View file @
a6fa5e4b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/onnx/conv.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/stringutils.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearConv in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearConv
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
ATTRIBUTES:
auto_pad : string
channels_last : int
dilations : list of ints
group : int
kernel_shape : list of ints
pads : list of ints
strides : list of ints
INPUTS (8 - 9):
x : T1
x_scale : tensor(float)
x_zero_point : T1
w : T2
w_scale : tensor(float)
w_zero_point : T2
y_scale : tensor(float)
y_zero_point : T3
B (optional) : T4
OUTPUTS:
y : T3
Type Constraints:
T1 : tensor(int8), tensor(uint8)
T2 : tensor(int8), tensor(uint8)
T3 : tensor(int8), tensor(uint8)
T4 : tensor(int32)
More details also at:
https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
*/
struct
parse_qlinearconv
:
op_parser
<
parse_qlinearconv
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearConv"
}};
}
// basic type checking for QLinearConv Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
inp_arg
)
const
{
if
(
inp_arg
.
size
()
<
8
)
MIGRAPHX_THROW
(
"QLINEARCONV: missing inputs"
);
const
instruction_ref
&
in_x
=
inp_arg
[
0
];
const
instruction_ref
&
in_scale_x
=
inp_arg
[
1
];
const
instruction_ref
&
in_w
=
inp_arg
[
3
];
const
instruction_ref
&
in_scale_w
=
inp_arg
[
4
];
const
instruction_ref
&
in_scale_y
=
inp_arg
[
6
];
auto
sh_x
=
in_x
->
get_shape
();
auto
sh_w
=
in_w
->
get_shape
();
auto
type_x
=
sh_x
.
type
();
auto
type_w
=
sh_w
.
type
();
assert
(
in_x
->
get_shape
().
ndim
()
>
2
);
if
(
type_x
!=
shape
::
int8_type
and
type_x
!=
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: unsupported input type"
);
if
(
type_w
!=
shape
::
int8_type
and
type_w
!=
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: unsupported weight type"
);
if
(
in_scale_x
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV x scale type should be float"
);
if
(
in_scale_w
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: wt scale type should be float"
);
if
(
in_scale_y
->
get_shape
().
type
()
!=
shape
::
float_type
)
MIGRAPHX_THROW
(
"QLINEARCONV: y scale type should be float"
);
if
(
inp_arg
.
size
()
>
8
and
inp_arg
[
8
]
->
get_shape
().
type
()
!=
shape
::
int32_type
)
MIGRAPHX_THROW
(
"QLINEARCONV y bias should be int32"
);
}
// process all attributes of QLinearConv Operator..
value
process_attributes
(
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
value
values
;
const
auto
&
in_x
=
args
[
0
];
const
auto
&
wt
=
args
[
3
];
size_t
kdims
=
in_x
->
get_shape
().
ndim
()
-
2
;
check_padding_mode
(
info
,
"QLINEARCONV"
);
values
[
"stride"
]
=
std
::
vector
<
int
>
(
kdims
,
1
);
values
[
"dilation"
]
=
std
::
vector
<
int
>
(
kdims
,
1
);
values
[
"padding"
]
=
std
::
vector
<
int
>
(
kdims
,
0
);
values
[
"group"
]
=
1
;
if
(
contains
(
info
.
attributes
,
"group"
))
values
[
"group"
]
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"group"
)).
template
at
<
int
>();
if
(
contains
(
info
.
attributes
,
"strides"
))
{
std
::
vector
<
int
>
st
;
copy
(
info
.
attributes
.
at
(
"strides"
).
ints
(),
std
::
back_inserter
(
st
));
check_attr_sizes
(
kdims
,
st
.
size
(),
"QLINEARCONV: inconsistent strides"
);
values
[
"stride"
]
=
st
;
}
if
(
contains
(
info
.
attributes
,
"dilations"
))
{
std
::
vector
<
int
>
dil
;
copy
(
info
.
attributes
.
at
(
"dilations"
).
ints
(),
std
::
back_inserter
(
dil
));
check_attr_sizes
(
kdims
,
dil
.
size
(),
"QLINEARCONV: inconsistent dilations"
);
values
[
"dilation"
]
=
dil
;
}
if
(
contains
(
info
.
attributes
,
"pads"
))
{
std
::
vector
<
int
>
pads
;
copy
(
info
.
attributes
.
at
(
"pads"
).
ints
(),
std
::
back_inserter
(
pads
));
check_attr_sizes
(
kdims
,
pads
.
size
()
/
2
,
"QLINEARCONV: inconsistent padding"
);
values
[
"padding"
]
=
pads
;
}
else
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
auto
in_lens
=
in_x
->
get_shape
().
lens
();
auto
wt_lens
=
wt
->
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
k_lens
(
wt_lens
.
begin
()
+
2
,
wt_lens
.
end
());
std
::
vector
<
int64_t
>
pads
=
values
[
"padding"
].
to_vector
<
std
::
int64_t
>
();
cal_auto_padding_size
(
info
,
values
,
k_lens
,
values
[
"dilation"
].
to_vector
<
std
::
size_t
>
(),
in_lens
,
pads
);
values
[
"padding"
]
=
pads
;
}
recalc_conv_attributes
(
values
,
kdims
);
return
values
;
}
instruction_ref
add_bias_to_conv
(
const
instruction_ref
bias_arg
,
const
instruction_ref
conv_instr
,
const
onnx_parser
::
node_info
&
info
)
const
{
auto
conv_sh
=
conv_instr
->
get_shape
();
auto
conv_lens
=
conv_sh
.
lens
();
auto
conv_type
=
conv_sh
.
type
();
auto
broadcast_bias
=
info
.
add_instruction
(
migraphx
::
make_op
(
"broadcast"
,
{{
"axis"
,
1
},
{
"out_lens"
,
conv_lens
}}),
bias_arg
);
auto
f_bias
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
conv_type
}}),
broadcast_bias
);
return
info
.
add_instruction
(
migraphx
::
make_op
(
"add"
),
conv_instr
,
f_bias
);
};
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
auto
values
=
process_attributes
(
parser
,
info
,
args
);
// input: quantized x, scale, zero_pt
const
instruction_ref
&
in_x
=
args
[
0
];
const
instruction_ref
&
in_scale_x
=
args
[
1
];
const
instruction_ref
&
in_zero_pt_x
=
args
[
2
];
// input: quantized weights, scale, zero_pt
const
instruction_ref
&
in_w
=
args
[
3
];
const
instruction_ref
&
in_scale_w
=
args
[
4
];
const
instruction_ref
&
in_zero_pt_w
=
args
[
5
];
// for the dequantized output y: scale & zero_pt
const
instruction_ref
&
in_scale_y
=
args
[
6
];
const
instruction_ref
&
in_zero_pt_y
=
args
[
7
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
in_scale_x
,
in_zero_pt_x
,
info
);
auto
dquant_w
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_w
,
in_scale_w
,
in_zero_pt_w
,
info
);
auto
conv_op
=
migraphx
::
make_op
(
"convolution"
,
values
);
auto
conv_x_w
=
info
.
add_instruction
(
conv_op
,
dquant_x
,
dquant_w
);
// Biases, if any.. : is an optional argument.
if
(
args
.
size
()
>
8
)
conv_x_w
=
add_bias_to_conv
(
args
[
8
],
conv_x_w
,
info
);
auto
quant_conv
=
bcast_qdq_instr
(
"quantizelinear"
,
conv_x_w
,
in_scale_y
,
in_zero_pt_y
,
info
);
return
quant_conv
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinearglavgpool.cpp
0 → 100644
View file @
a6fa5e4b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: unsupported input type"
);
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
check_inputs
(
args
);
// Input: X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
scale_x
=
args
[
1
];
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
return
out_quant_y
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_qlinearmatmul.cpp
0 → 100644
View file @
a6fa5e4b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearMatMul in *
* https://onnx.ai/onnx/operators/onnx__QLinearMatMul.html *
*********************************************************************************
Matrix product that behaves like numpy.matmul:
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. It consumes two
quantized input tensors, their scales and zero points, scale and zero point of output, and computes
the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x
/ y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding
for details. Scale and zero point must have same shape. They must be either scalar (per tensor) or
N-D tensor (per row for ‘a’ and per column for ‘b’). Scalar refers to per tensor quantization
whereas N-D refers to per row or per column quantization. If the input is 2D of shape [M, K] then
zero point and scale tensor may be an M element vector [v_1, v_2, …, v_M] for per row quantization
and K element vector of shape [v_1, v_2, …, v_K] for per column quantization. If the input is N-D
tensor with shape [D1, D2, M, K] then zero point and scale tensor may have shape [D1, D2, M, 1] for
per row quantization and shape [D1, D2, 1, K] for per column quantization. Production must never
overflow, and accumulation may overflow if and only if in 32 bits.
Inputs
a (heterogeneous) - T1: N-dimensional quantized matrix a
a_scale (heterogeneous) - tensor(float): scale of quantized input a
a_zero_point (heterogeneous) - T1: zero point of quantized input a
b (heterogeneous) - T2: N-dimensional quantized matrix b
b_scale (heterogeneous) - tensor(float): scale of quantized input b
b_zero_point (heterogeneous) - T2: zero point of quantized input b
y_scale (heterogeneous) - tensor(float): scale of quantized output y
y_zero_point (heterogeneous) - T3: zero point of quantized output y
Outputs
y (heterogeneous) - T3: Quantized matrix multiply results from a * b
Type Constraints
T1 in ( tensor(int8), tensor(uint8) ): Constrain input a and its zero point data type to 8-bit
integer tensor.
T2 in ( tensor(int8), tensor(uint8) ): Constrain input b and its zero point data type to 8-bit
integer tensor.
T3 in ( tensor(int8), tensor(uint8) ): Constrain output y and its zero point data type to 8-bit
integer tensor.
*/
struct
parse_qlinearmatmul
:
op_parser
<
parse_qlinearmatmul
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearMatMul"
}};
}
// basic type checking for QLinearMatMul Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
8
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: missing inputs"
);
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_b
=
args
[
3
];
auto
sh_a
=
in_a
->
get_shape
();
auto
sh_b
=
in_b
->
get_shape
();
auto
type_a
=
sh_a
.
type
();
auto
type_b
=
sh_b
.
type
();
if
(
type_a
!=
migraphx
::
shape
::
int8_type
and
type_a
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported input type"
);
if
(
type_b
!=
migraphx
::
shape
::
int8_type
and
type_b
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported input type"
);
auto
lens_a
=
sh_a
.
lens
();
auto
lens_b
=
sh_b
.
lens
();
size_t
dim_a
=
lens_a
.
size
();
size_t
dim_b
=
lens_b
.
size
();
if
(
dim_a
==
0
or
dim_b
==
0
)
MIGRAPHX_THROW
(
"QLINEARMATMUL: empty input"
);
// broadcast supported if either is 1-D -- the other can be a 2-D tensor.
// if it is 1-D, just prepend/append that lens and check further constraints..
if
(
dim_a
==
1
)
{
lens_a
.
insert
(
lens_a
.
begin
(),
1
);
dim_a
++
;
}
if
(
dim_b
==
1
)
{
lens_b
.
push_back
(
1
);
dim_b
++
;
}
// 2-D or higher-order mat mul
if
(
dim_a
!=
dim_b
or
*
lens_a
.
rbegin
()
!=
*
(
lens_b
.
rbegin
()
+
1
)
or
not
std
::
equal
(
lens_a
.
rbegin
()
+
2
,
lens_a
.
rend
(),
lens_b
.
rbegin
()
+
2
,
lens_b
.
rend
()))
MIGRAPHX_THROW
(
"QLINEARMATMUL: mismatched input dimensions"
);
if
(
migraphx
::
any_of
({
args
[
1
],
args
[
2
],
args
[
4
],
args
[
5
]},
[](
auto
arg
)
{
return
not
arg
->
get_shape
().
scalar
();
}))
MIGRAPHX_THROW
(
"QLINEARMATMUL: unsupported row/column quantization"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
/*parser*/
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
check_inputs
(
args
);
// A
const
auto
&
in_a
=
args
[
0
];
const
auto
&
in_scale_a
=
args
[
1
];
const
auto
&
in_zero_pt_a
=
args
[
2
];
auto
dquant_a
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_a
,
in_scale_a
,
in_zero_pt_a
,
info
);
// B
const
auto
&
in_b
=
args
[
3
];
const
auto
&
in_scale_b
=
args
[
4
];
const
auto
&
in_zero_pt_b
=
args
[
5
];
auto
dquant_b
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_b
,
in_scale_b
,
in_zero_pt_b
,
info
);
bool
is_a_prepended
=
false
;
bool
is_b_appended
=
false
;
// un-squeeze either tensor if 1-D.
if
(
in_a
->
get_shape
().
ndim
()
==
1
)
{
is_a_prepended
=
true
;
dquant_a
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
0
}}}),
dquant_a
);
}
if
(
in_b
->
get_shape
().
ndim
()
==
1
)
{
is_b_appended
=
true
;
dquant_b
=
info
.
add_instruction
(
make_op
(
"unsqueeze"
,
{{
"axes"
,
{
1
}}}),
dquant_b
);
}
// Y = A * B
auto
out_y
=
info
.
add_instruction
(
migraphx
::
make_op
(
"dot"
),
dquant_a
,
dquant_b
);
// squeeze just once if necessary.. not twice.
if
(
is_a_prepended
)
out_y
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
0
}}}),
out_y
);
else
if
(
is_b_appended
)
out_y
=
info
.
add_instruction
(
make_op
(
"squeeze"
,
{{
"axes"
,
{
1
}}}),
out_y
);
const
auto
&
scale_y
=
args
[
6
];
const
auto
&
zero_pt_y
=
args
[
7
];
return
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_reshape.cpp
View file @
a6fa5e4b
/*
/*
* The MIT License (MIT)
* The MIT License (MIT)
*
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* of this software and associated documentation files (the "Software"), to deal
...
@@ -45,16 +45,25 @@ struct parse_reshape : op_parser<parse_reshape>
...
@@ -45,16 +45,25 @@ struct parse_reshape : op_parser<parse_reshape>
{
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"shape"
));
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"shape"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
args
[
0
]);
}
}
if
(
args
.
size
()
==
2
)
else
{
{
// 2 inputs
auto
s
=
args
[
1
]
->
eval
();
auto
s
=
args
[
1
]
->
eval
();
check_arg_empty
(
s
,
"Reshape: non-constant shape input is not supported"
);
if
(
s
.
empty
())
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
{
// arg[1] not eval-able
auto
alloc_ins
=
info
.
add_instruction
(
make_op
(
"allocate"
,
{{
"buf_type"
,
args
[
0
]
->
get_shape
().
type
()}}),
args
[
1
]);
return
info
.
add_instruction
(
make_op
(
"reshape"
),
args
[
0
],
alloc_ins
);
}
else
{
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
dims
));
});
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
args
[
0
]);
}
}
}
auto
cont
=
info
.
add_instruction
(
make_op
(
"contiguous"
),
args
[
0
]);
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
dims
}}),
cont
);
}
}
};
};
...
...
src/onnx/parse_resize.cpp
View file @
a6fa5e4b
...
@@ -320,7 +320,8 @@ struct parse_resize : op_parser<parse_resize>
...
@@ -320,7 +320,8 @@ struct parse_resize : op_parser<parse_resize>
// get the number of dimensions
// get the number of dimensions
std
::
size_t
n_dim
=
out_lens
.
size
();
std
::
size_t
n_dim
=
out_lens
.
size
();
auto
vvv_ind
=
std
::
vector
(
n_dim
,
std
::
vector
(
2
,
std
::
vector
<
size_t
>
(
out_elements
)));
std
::
vector
<
std
::
vector
<
std
::
size_t
>>
vv_ind
(
2
,
std
::
vector
<
std
::
size_t
>
(
out_elements
));
std
::
vector
<
std
::
vector
<
std
::
vector
<
std
::
size_t
>>>
vvv_ind
(
n_dim
,
vv_ind
);
std
::
vector
<
std
::
vector
<
float
>>
delta
(
n_dim
,
std
::
vector
<
float
>
(
out_elements
));
std
::
vector
<
std
::
vector
<
float
>>
delta
(
n_dim
,
std
::
vector
<
float
>
(
out_elements
));
shape_for_each
(
out_s
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_idx
)
{
shape_for_each
(
out_s
,
[
&
](
const
auto
&
out_idx_v
,
size_t
out_idx
)
{
...
...
src/onnx/parse_shrink.cpp
0 → 100644
View file @
a6fa5e4b
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_shrink
:
op_parser
<
parse_shrink
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Shrink"
}};
}
instruction_ref
parse
(
const
op_desc
&
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
float
bias
=
0.0
;
if
(
contains
(
info
.
attributes
,
"bias"
))
{
bias
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"bias"
)).
at
<
float
>
();
}
float
lambd
=
0.5
;
if
(
contains
(
info
.
attributes
,
"lambd"
))
{
lambd
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"lambd"
)).
at
<
float
>
();
}
auto
x
=
args
[
0
];
auto
x_shape
=
x
->
get_shape
();
auto
x_type
=
x_shape
.
type
();
auto
lit_bias
=
info
.
add_literal
(
bias
);
auto
lit_neg_lambd
=
info
.
add_literal
(
-
lambd
);
auto
lit_lambd
=
info
.
add_literal
(
lambd
);
auto
x_plus_bias
=
info
.
add_common_op
(
"add"
,
x
,
lit_bias
);
auto
x_min_bias
=
info
.
add_common_op
(
"sub"
,
x
,
lit_bias
);
auto
cond1
=
info
.
add_common_op
(
"less"
,
x
,
lit_neg_lambd
);
auto
cond2_a
=
info
.
add_common_op
(
"not"
,
cond1
);
auto
cond2_b
=
info
.
add_common_op
(
"greater"
,
x
,
lit_lambd
);
auto
cond2
=
info
.
add_common_op
(
"logical_and"
,
cond2_a
,
cond2_b
);
auto
mul1
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
cond1
);
auto
mul2
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
cond2
);
auto
first
=
info
.
add_common_op
(
"mul"
,
mul1
,
x_plus_bias
);
auto
second
=
info
.
add_common_op
(
"mul"
,
mul2
,
x_min_bias
);
auto
ret
=
info
.
add_common_op
(
"add"
,
first
,
second
);
if
(
ret
->
get_shape
().
type
()
!=
x_type
)
{
ret
=
info
.
add_instruction
(
make_op
(
"convert"
,
{{
"target_type"
,
x_type
}}),
ret
);
}
return
ret
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/parse_spacetodepth.cpp
View file @
a6fa5e4b
...
@@ -73,8 +73,7 @@ struct parse_spacetodepth : op_parser<parse_spacetodepth>
...
@@ -73,8 +73,7 @@ struct parse_spacetodepth : op_parser<parse_spacetodepth>
std
::
vector
<
int64_t
>
perm
=
{
0
,
3
,
5
,
1
,
2
,
4
};
std
::
vector
<
int64_t
>
perm
=
{
0
,
3
,
5
,
1
,
2
,
4
};
auto
temp1
=
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
trans_lens
}}),
args
[
0
]);
auto
temp1
=
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
trans_lens
}}),
args
[
0
]);
auto
temp2
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
temp1
);
auto
temp2
=
info
.
add_instruction
(
make_op
(
"transpose"
,
{{
"permutation"
,
perm
}}),
temp1
);
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
res_lens
}}),
return
info
.
add_instruction
(
make_op
(
"reshape"
,
{{
"dims"
,
res_lens
}}),
temp2
);
info
.
make_contiguous
(
temp2
));
}
}
};
};
...
...
src/onnx/parse_trilu.cpp
View file @
a6fa5e4b
...
@@ -56,9 +56,6 @@ struct parse_trilu : op_parser<parse_trilu>
...
@@ -56,9 +56,6 @@ struct parse_trilu : op_parser<parse_trilu>
k
=
arg_k
.
at
<
int
>
();
k
=
arg_k
.
at
<
int
>
();
}
}
if
(
k
<
0
)
MIGRAPHX_THROW
(
"PARSE_TRILU: negative k values not supported"
);
if
(
contains
(
info
.
attributes
,
"upper"
))
if
(
contains
(
info
.
attributes
,
"upper"
))
{
{
upper
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"upper"
).
i
());
upper
=
static_cast
<
bool
>
(
info
.
attributes
.
at
(
"upper"
).
i
());
...
@@ -69,9 +66,12 @@ struct parse_trilu : op_parser<parse_trilu>
...
@@ -69,9 +66,12 @@ struct parse_trilu : op_parser<parse_trilu>
// when creating the mask, if upper == 1,
// when creating the mask, if upper == 1,
// the inner triangle will have values set to 0
// the inner triangle will have values set to 0
std
::
vector
<
bool
>
mask_mat
(
num_rows
*
num_cols
,
upper
);
std
::
vector
<
bool
>
mask_mat
(
num_rows
*
num_cols
,
upper
);
// if upper == 0, kth diagonal must also be masked
if
(
not
upper
)
k
++
;
for
(
size_t
i
=
0
;
i
<
num_rows
;
i
++
)
for
(
size_t
i
=
0
;
i
<
num_rows
;
i
++
)
{
{
for
(
size_
t
j
=
0
;
j
<
std
::
min
(
k
,
static_cast
<
int
>
(
num_cols
));
j
++
)
for
(
in
t
j
=
0
;
j
<
std
::
min
(
k
,
static_cast
<
int
>
(
num_cols
));
j
++
)
{
{
mask_mat
[
i
*
num_cols
+
j
]
=
not
upper
;
mask_mat
[
i
*
num_cols
+
j
]
=
not
upper
;
}
}
...
...
src/process.cpp
View file @
a6fa5e4b
...
@@ -26,13 +26,23 @@
...
@@ -26,13 +26,23 @@
#include <migraphx/env.hpp>
#include <migraphx/env.hpp>
#include <functional>
#include <functional>
#include <iostream>
#include <iostream>
#include <optional>
#ifdef _WIN32
// cppcheck-suppress definePrefix
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#else
#include <unistd.h>
#include <unistd.h>
#endif
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TRACE_CMD_EXECUTE
)
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_TRACE_CMD_EXECUTE
)
#ifndef _WIN32
std
::
function
<
void
(
const
char
*
)
>
redirect_to
(
std
::
ostream
&
os
)
std
::
function
<
void
(
const
char
*
)
>
redirect_to
(
std
::
ostream
&
os
)
{
{
return
[
&
](
const
char
*
x
)
{
os
<<
x
;
};
return
[
&
](
const
char
*
x
)
{
os
<<
x
;
};
...
@@ -74,6 +84,155 @@ int exec(const std::string& cmd, std::function<void(process::writer)> std_in)
...
@@ -74,6 +84,155 @@ int exec(const std::string& cmd, std::function<void(process::writer)> std_in)
});
});
}
}
#else
constexpr
std
::
size_t
MIGRAPHX_PROCESS_BUFSIZE
=
4096
;
class
pipe
{
public:
explicit
pipe
(
bool
inherit_handle
=
true
)
{
SECURITY_ATTRIBUTES
attrs
;
attrs
.
nLength
=
sizeof
(
SECURITY_ATTRIBUTES
);
attrs
.
bInheritHandle
=
inherit_handle
?
TRUE
:
FALSE
;
attrs
.
lpSecurityDescriptor
=
nullptr
;
if
(
CreatePipe
(
&
m_read
,
&
m_write
,
&
attrs
,
0
)
==
FALSE
)
throw
GetLastError
();
if
(
SetHandleInformation
(
&
m_read
,
HANDLE_FLAG_INHERIT
,
0
)
==
FALSE
)
throw
GetLastError
();
}
pipe
(
const
pipe
&
)
=
delete
;
pipe
&
operator
=
(
const
pipe
&
)
=
delete
;
pipe
(
pipe
&&
)
=
default
;
~
pipe
()
{
CloseHandle
(
m_read
);
m_read
=
nullptr
;
CloseHandle
(
m_write
);
m_write
=
nullptr
;
}
std
::
optional
<
std
::
pair
<
bool
,
DWORD
>>
read
(
LPVOID
buffer
,
DWORD
length
)
const
{
DWORD
bytes_read
;
if
(
ReadFile
(
m_read
,
buffer
,
length
,
&
bytes_read
,
nullptr
)
==
FALSE
)
{
DWORD
error
{
GetLastError
()};
if
(
error
!=
ERROR_MORE_DATA
)
{
return
std
::
nullopt
;
}
return
{{
true
,
bytes_read
}};
}
return
{{
false
,
bytes_read
}};
}
HANDLE
get_read_handle
()
const
{
return
m_read
;
}
bool
write
(
LPCVOID
buffer
,
DWORD
length
)
const
{
DWORD
bytes_written
;
return
WriteFile
(
m_write
,
buffer
,
length
,
&
bytes_written
,
nullptr
)
==
TRUE
;
}
HANDLE
get_write_handle
()
const
{
return
m_write
;
}
private:
HANDLE
m_write
=
nullptr
,
m_read
=
nullptr
;
};
template
<
typename
F
>
int
exec
(
const
std
::
string
&
cmd
,
F
f
)
{
try
{
if
(
enabled
(
MIGRAPHX_TRACE_CMD_EXECUTE
{}))
std
::
cout
<<
cmd
<<
std
::
endl
;
STARTUPINFO
info
;
PROCESS_INFORMATION
process_info
;
pipe
in
{},
out
{};
ZeroMemory
(
&
info
,
sizeof
(
STARTUPINFO
));
info
.
cb
=
sizeof
(
STARTUPINFO
);
info
.
hStdError
=
out
.
get_write_handle
();
info
.
hStdOutput
=
out
.
get_write_handle
();
info
.
hStdInput
=
in
.
get_read_handle
();
info
.
dwFlags
|=
STARTF_USESTDHANDLES
;
ZeroMemory
(
&
process_info
,
sizeof
(
process_info
));
if
(
CreateProcess
(
nullptr
,
const_cast
<
LPSTR
>
(
cmd
.
c_str
()),
nullptr
,
nullptr
,
TRUE
,
0
,
nullptr
,
nullptr
,
&
info
,
&
process_info
)
==
FALSE
)
{
return
GetLastError
();
}
f
(
in
,
out
);
WaitForSingleObject
(
process_info
.
hProcess
,
INFINITE
);
DWORD
status
{};
GetExitCodeProcess
(
process_info
.
hProcess
,
&
status
);
CloseHandle
(
process_info
.
hProcess
);
CloseHandle
(
process_info
.
hThread
);
return
static_cast
<
int
>
(
status
);
}
// cppcheck-suppress catchExceptionByValue
catch
(
DWORD
last_error
)
{
return
last_error
;
}
}
int
exec
(
const
std
::
string
&
cmd
)
{
TCHAR
buffer
[
MIGRAPHX_PROCESS_BUFSIZE
];
HANDLE
std_out
{
GetStdHandle
(
STD_OUTPUT_HANDLE
)};
return
(
std_out
==
nullptr
or
std_out
==
INVALID_HANDLE_VALUE
)
?
GetLastError
()
:
exec
(
cmd
,
[
&
](
const
pipe
&
,
const
pipe
&
out
)
{
for
(;;)
{
if
(
auto
result
=
out
.
read
(
buffer
,
MIGRAPHX_PROCESS_BUFSIZE
))
{
auto
[
more_data
,
bytes_read
]
=
*
result
;
if
(
not
more_data
or
bytes_read
==
0
)
break
;
DWORD
written
;
if
(
WriteFile
(
std_out
,
buffer
,
bytes_read
,
&
written
,
nullptr
)
==
FALSE
)
break
;
}
}
});
}
int
exec
(
const
std
::
string
&
cmd
,
std
::
function
<
void
(
process
::
writer
)
>
std_in
)
{
return
exec
(
cmd
,
[
&
](
const
pipe
&
in
,
const
pipe
&
)
{
std_in
([
&
](
const
char
*
buffer
,
std
::
size_t
n
)
{
in
.
write
(
buffer
,
n
);
});
});
}
#endif
struct
process_impl
struct
process_impl
{
{
std
::
string
command
{};
std
::
string
command
{};
...
@@ -119,7 +278,14 @@ process& process::cwd(const fs::path& p)
...
@@ -119,7 +278,14 @@ process& process::cwd(const fs::path& p)
return
*
this
;
return
*
this
;
}
}
void
process
::
exec
()
{
impl
->
check_exec
(
impl
->
get_command
(),
redirect_to
(
std
::
cout
));
}
void
process
::
exec
()
{
#ifndef _WIN32
impl
->
check_exec
(
impl
->
get_command
(),
redirect_to
(
std
::
cout
));
#else
impl
->
check_exec
(
impl
->
get_command
());
#endif
}
void
process
::
write
(
std
::
function
<
void
(
process
::
writer
)
>
pipe_in
)
void
process
::
write
(
std
::
function
<
void
(
process
::
writer
)
>
pipe_in
)
{
{
...
...
src/program.cpp
View file @
a6fa5e4b
...
@@ -347,7 +347,7 @@ void program::finalize()
...
@@ -347,7 +347,7 @@ void program::finalize()
template
<
class
T
>
template
<
class
T
>
std
::
string
classify
(
T
x
)
std
::
string
classify
(
T
x
)
{
{
switch
(
std
::
fpclassify
(
x
))
switch
(
std
::
fpclassify
(
static_cast
<
double
>
(
x
)
))
{
{
case
FP_INFINITE
:
return
"inf"
;
case
FP_INFINITE
:
return
"inf"
;
case
FP_NAN
:
return
"nan"
;
case
FP_NAN
:
return
"nan"
;
...
@@ -936,7 +936,7 @@ void program::perf_report(std::ostream& os,
...
@@ -936,7 +936,7 @@ void program::perf_report(std::ostream& os,
os
<<
std
::
endl
;
os
<<
std
::
endl
;
os
<<
"Batch size: "
<<
batch
<<
std
::
endl
;
os
<<
"Batch size: "
<<
batch
<<
std
::
endl
;
os
<<
"Rate: "
<<
rate
*
batch
<<
"/sec"
<<
std
::
endl
;
os
<<
"Rate: "
<<
rate
*
batch
<<
"
inferences
/sec"
<<
std
::
endl
;
os
<<
"Total time: "
<<
total_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Total time: "
<<
total_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Total instructions time: "
<<
total_instruction_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Total instructions time: "
<<
total_instruction_time
<<
"ms"
<<
std
::
endl
;
os
<<
"Overhead time: "
<<
overhead_time
<<
"ms"
os
<<
"Overhead time: "
<<
overhead_time
<<
"ms"
...
...
src/py/CMakeLists.txt
View file @
a6fa5e4b
...
@@ -22,27 +22,24 @@
...
@@ -22,27 +22,24 @@
# THE SOFTWARE.
# THE SOFTWARE.
#####################################################################################
#####################################################################################
option
(
MIGRAPHX_ENABLE_PYTHON
"Enable python bindings"
ON
)
add_library
(
migraphx_py py_loader.cpp
)
add_library
(
migraphx_py py_loader.cpp
)
migraphx_generate_export_header
(
migraphx_py
)
migraphx_generate_export_header
(
migraphx_py
)
target_include_directories
(
migraphx_py PRIVATE include
)
target_include_directories
(
migraphx_py PRIVATE include
)
target_link_libraries
(
migraphx_py PUBLIC migraphx
)
target_link_libraries
(
migraphx_py PUBLIC migraphx
)
rocm_install_targets
(
TARGETS migraphx_py INCLUDE include
)
rocm_install_targets
(
TARGETS migraphx_py INCLUDE include
)
if
(
MIGRAPHX_ENABLE_PYTHON
)
include
(
PythonModules
)
include
(
PythonModules
)
foreach
(
PYTHON_VERSION
${
PYTHON_VERSIONS
}
)
foreach
(
PYTHON_VERSION
${
PYTHON_VERSIONS
}
)
py_add_module
(
migraphx_pybind_
${
PYTHON_VERSION
}
migraphx_py.cpp PYTHON_VERSION
${
PYTHON_VERSION
}
PYTHON_MODULE migraphx
)
py_add_module
(
migraphx_pybind_
${
PYTHON_VERSION
}
migraphx_py.cpp PYTHON_VERSION
${
PYTHON_VERSION
}
PYTHON_MODULE migraphx
)
target_link_libraries
(
migraphx_pybind_
${
PYTHON_VERSION
}
PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets
)
target_link_libraries
(
migraphx_pybind_
${
PYTHON_VERSION
}
PRIVATE migraphx migraphx_tf migraphx_onnx migraphx_all_targets
)
rocm_install_targets
(
TARGETS migraphx_pybind_
${
PYTHON_VERSION
}
)
rocm_install_targets
(
TARGETS migraphx_pybind_
${
PYTHON_VERSION
}
)
add_dependencies
(
migraphx_py migraphx_pybind_
${
PYTHON_VERSION
}
)
add_dependencies
(
migraphx_py migraphx_pybind_
${
PYTHON_VERSION
}
)
add_library
(
migraphx_py_
${
PYTHON_VERSION
}
py.cpp
)
add_library
(
migraphx_py_
${
PYTHON_VERSION
}
py.cpp
)
target_include_directories
(
migraphx_py_
${
PYTHON_VERSION
}
PRIVATE include
)
target_include_directories
(
migraphx_py_
${
PYTHON_VERSION
}
PRIVATE include
)
target_link_libraries
(
migraphx_py_
${
PYTHON_VERSION
}
PUBLIC migraphx
)
target_link_libraries
(
migraphx_py_
${
PYTHON_VERSION
}
PUBLIC migraphx
)
target_link_libraries
(
migraphx_py_
${
PYTHON_VERSION
}
PRIVATE pybind11::pybind11 python
${
PYTHON_VERSION
}
::runtime
)
target_link_libraries
(
migraphx_py_
${
PYTHON_VERSION
}
PRIVATE pybind11::pybind11 python
${
PYTHON_VERSION
}
::runtime
)
rocm_install_targets
(
TARGETS migraphx_py_
${
PYTHON_VERSION
}
)
rocm_install_targets
(
TARGETS migraphx_py_
${
PYTHON_VERSION
}
)
add_dependencies
(
migraphx_py migraphx_py_
${
PYTHON_VERSION
}
)
add_dependencies
(
migraphx_py migraphx_py_
${
PYTHON_VERSION
}
)
endforeach
()
endforeach
()
endif
()
src/quantization.cpp
View file @
a6fa5e4b
...
@@ -70,6 +70,10 @@ void quantize_int8(program& prog,
...
@@ -70,6 +70,10 @@ void quantize_int8(program& prog,
MIGRAPHX_THROW
(
"QUANTIZE_INT8: only support DOT and CONVOLUTION operation"
);
MIGRAPHX_THROW
(
"QUANTIZE_INT8: only support DOT and CONVOLUTION operation"
);
}
}
// Run optimize_module() before converting to int8 to const eval and fold in FP32 to
// avoid loss of precision.
run_passes
(
prog
,
{
optimize_module
{}});
std
::
shared_ptr
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
int8_quant_params
=
std
::
shared_ptr
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
int8_quant_params
=
std
::
make_shared
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
();
std
::
make_shared
<
std
::
vector
<
std
::
pair
<
float
,
float
>>>
();
std
::
shared_ptr
<
std
::
vector
<
float
>>
max_abs_vals
=
std
::
make_shared
<
std
::
vector
<
float
>>
();
std
::
shared_ptr
<
std
::
vector
<
float
>>
max_abs_vals
=
std
::
make_shared
<
std
::
vector
<
float
>>
();
...
@@ -143,10 +147,7 @@ void quantize_int8(program& prog,
...
@@ -143,10 +147,7 @@ void quantize_int8(program& prog,
run_passes
(
prog
,
run_passes
(
prog
,
{
quantize_int8_pass
{
ins_names
,
*
int8_quant_params
},
{
quantize_int8_pass
{
ins_names
,
*
int8_quant_params
},
eliminate_common_subexpression
{},
optimize_module
{},
dead_code_elimination
{},
simplify_reshapes
{},
dead_code_elimination
{},
simplify_qdq
{},
simplify_qdq
{},
dead_code_elimination
{}});
dead_code_elimination
{}});
}
}
...
...
src/rewrite_quantization.cpp
View file @
a6fa5e4b
...
@@ -33,6 +33,8 @@
...
@@ -33,6 +33,8 @@
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_CK_WORKAROUNDS
);
void
apply_quantizelinear
(
module
&
m
,
instruction_ref
ins
)
void
apply_quantizelinear
(
module
&
m
,
instruction_ref
ins
)
{
{
assert
(
ins
->
name
()
==
"quantizelinear"
);
assert
(
ins
->
name
()
==
"quantizelinear"
);
...
@@ -62,9 +64,22 @@ void apply_quantizelinear(module& m, instruction_ref ins)
...
@@ -62,9 +64,22 @@ void apply_quantizelinear(module& m, instruction_ref ins)
max_quant
=
qt
.
max
();
max_quant
=
qt
.
max
();
min_quant
=
qt
.
min
();
min_quant
=
qt
.
min
();
});
});
auto
s
=
add_zero_point
->
get_shape
();
auto
s
=
add_zero_point
->
get_shape
();
auto
min_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
min_quant
}});
instruction_ref
min_arg
;
auto
max_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
max_quant
}});
instruction_ref
max_arg
;
if
(
enabled
(
MIGRAPHX_ENABLE_CK_WORKAROUNDS
{}))
{
std
::
vector
<
int
>
min_data
(
s
.
elements
(),
min_quant
);
std
::
vector
<
int
>
max_data
(
s
.
elements
(),
max_quant
);
min_arg
=
m
.
add_literal
(
literal
(
s
,
min_data
));
max_arg
=
m
.
add_literal
(
literal
(
s
,
max_data
));
}
else
{
min_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
min_quant
}});
max_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
max_quant
}});
}
auto
saturate
=
insert_common_op
(
m
,
ins
,
make_op
(
"clip"
),
{
add_zero_point
,
min_arg
,
max_arg
});
auto
saturate
=
insert_common_op
(
m
,
ins
,
make_op
(
"clip"
),
{
add_zero_point
,
min_arg
,
max_arg
});
m
.
replace_instruction
(
m
.
replace_instruction
(
ins
,
make_op
(
"convert"
,
{{
"target_type"
,
ins
->
get_shape
().
type
()}}),
saturate
);
ins
,
make_op
(
"convert"
,
{{
"target_type"
,
ins
->
get_shape
().
type
()}}),
saturate
);
...
...
src/simplify_algebra.cpp
View file @
a6fa5e4b
/*
/*
* The MIT License (MIT)
* The MIT License (MIT)
*
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* of this software and associated documentation files (the "Software"), to deal
...
@@ -521,6 +521,27 @@ struct find_inner_broadcast
...
@@ -521,6 +521,27 @@ struct find_inner_broadcast
})
<
(
lens
.
size
()
-
1
);
})
<
(
lens
.
size
()
-
1
);
}))
}))
return
;
return
;
if
(
broadcasts
.
size
()
>
1
)
{
auto
bcast_strides
=
broadcasts
.
front
()
->
get_shape
().
strides
().
size
();
std
::
vector
<
size_t
>
common_axis
(
bcast_strides
,
0
);
// go through the strides of each broadcast,
// keep track of values that are equal to 0 in a dimension
for
(
auto
i
=
0
;
i
<
bcast_strides
;
i
++
)
{
for
(
const
auto
&
broadcast
:
broadcasts
)
{
if
(
broadcast
->
get_shape
().
strides
()[
i
]
==
0
)
common_axis
[
i
]
++
;
}
}
// if no common broadcast axis, transformation is not useful
if
(
std
::
find_if
(
common_axis
.
begin
(),
common_axis
.
end
(),
[](
auto
num_common
)
{
return
num_common
>
1
;
})
==
common_axis
.
end
())
return
;
}
std
::
vector
<
instruction_ref
>
inputs
;
std
::
vector
<
instruction_ref
>
inputs
;
std
::
transform
(
broadcasts
.
begin
(),
std
::
transform
(
broadcasts
.
begin
(),
broadcasts
.
end
(),
broadcasts
.
end
(),
...
...
src/simplify_reshapes.cpp
View file @
a6fa5e4b
...
@@ -632,6 +632,9 @@ struct find_transpose_contiguous_reshaper_unary
...
@@ -632,6 +632,9 @@ struct find_transpose_contiguous_reshaper_unary
}
}
};
};
// simplifies broadcast->transpose to transpose->broadcast
// in the case of a scalar, simply rewrite to broadcast
// this can allow for further optimizations with find_inner_broadcast() in simplify_algebra.cpp
struct
find_broadcast_transpose
struct
find_broadcast_transpose
{
{
auto
matcher
()
const
auto
matcher
()
const
...
@@ -642,17 +645,30 @@ struct find_broadcast_transpose
...
@@ -642,17 +645,30 @@ struct find_broadcast_transpose
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
void
apply
(
module
&
m
,
const
match
::
matcher_result
&
r
)
const
{
{
auto
ins
=
r
.
result
;
auto
transpose
=
r
.
result
;
auto
ins
_lens
=
ins
->
get_shape
().
lens
();
auto
transpose
_lens
=
transpose
->
get_shape
().
lens
();
auto
bcast_ins
=
r
.
instructions
[
"bcast_ins"
];
auto
bcast_ins
=
r
.
instructions
[
"bcast_ins"
];
auto
input
=
bcast_ins
->
inputs
().
front
();
auto
input
=
bcast_ins
->
inputs
().
front
();
//
for now, focusing on
scalar transformation
// scalar transformation
does not need extra transpose
if
(
not
input
->
get_shape
().
scalar
())
if
(
not
input
->
get_shape
().
scalar
())
return
;
{
// find common shape
auto
in_lens
=
input
->
get_shape
().
lens
();
int
lens_diff
=
transpose_lens
.
size
()
-
in_lens
.
size
();
// insert unsqueeze if input lens < transpose lens
if
(
lens_diff
>
0
)
{
std
::
vector
<
size_t
>
unsqueeze_axes
(
lens_diff
);
std
::
iota
(
unsqueeze_axes
.
begin
(),
unsqueeze_axes
.
end
(),
0
);
input
=
m
.
insert_instruction
(
bcast_ins
,
make_op
(
"unsqueeze"
,
{{
"axes"
,
unsqueeze_axes
}}),
input
);
}
// apply transpose before the multibroadcast
input
=
m
.
insert_instruction
(
bcast_ins
,
transpose
->
get_operator
(),
input
);
}
auto
new_mbcast
=
m
.
insert_instruction
(
auto
new_mbcast
=
m
.
insert_instruction
(
bcast_ins
,
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
ins
_lens
}}),
input
);
bcast_ins
,
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
transpose
_lens
}}),
input
);
m
.
replace_instruction
(
ins
,
new_mbcast
);
m
.
replace_instruction
(
transpose
,
new_mbcast
);
}
}
};
};
...
...
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
View file @
a6fa5e4b
...
@@ -91,6 +91,19 @@ struct post_op : reflect_equality<post_op>, reflect_stream<post_op>
...
@@ -91,6 +91,19 @@ struct post_op : reflect_equality<post_op>, reflect_stream<post_op>
}
}
};
};
template
<
class
F
>
struct
execute_wrapper
{
F
f
;
argument
operator
()(
context
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
f
(
args
);
}
};
template
<
class
F
>
execute_wrapper
<
F
>
make_execute_wrapper
(
F
f
)
{
return
{
std
::
move
(
f
)};
}
template
<
class
Derived
,
class
Primitive
>
template
<
class
Derived
,
class
Primitive
>
struct
dnnl_op
:
auto_register_op
<
Derived
>
struct
dnnl_op
:
auto_register_op
<
Derived
>
{
{
...
@@ -308,7 +321,7 @@ struct dnnl_op : auto_register_op<Derived>
...
@@ -308,7 +321,7 @@ struct dnnl_op : auto_register_op<Derived>
#ifndef NDEBUG
#ifndef NDEBUG
auto
prim_attr
=
get_primitive_attr
(
md
);
auto
prim_attr
=
get_primitive_attr
(
md
);
#endif
#endif
execute
=
[
=
](
context
&
,
const
std
::
vector
<
argument
>&
args
)
{
execute
=
make_execute_wrapper
([
=
](
const
std
::
vector
<
argument
>&
args
)
{
#ifndef NDEBUG
#ifndef NDEBUG
// Check that the memory descriptors have not changed
// Check that the memory descriptors have not changed
auto
debug_args
=
args
;
auto
debug_args
=
args
;
...
@@ -379,7 +392,7 @@ struct dnnl_op : auto_register_op<Derived>
...
@@ -379,7 +392,7 @@ struct dnnl_op : auto_register_op<Derived>
m
[
arg_lookup
[
i
]]
=
to_dnnl_memory
(
md
.
at
(
arg_lookup
[
i
]),
args
[
i
]);
m
[
arg_lookup
[
i
]]
=
to_dnnl_memory
(
md
.
at
(
arg_lookup
[
i
]),
args
[
i
]);
prim
.
execute
(
get_dnnl_context
().
stream
,
m
);
prim
.
execute
(
get_dnnl_context
().
stream
,
m
);
return
args
.
back
();
return
args
.
back
();
};
}
)
;
}
}
std
::
vector
<
shape
>
trim_post_op_inputs
(
const
std
::
vector
<
shape
>&
inputs
)
const
std
::
vector
<
shape
>
trim_post_op_inputs
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
{
...
...
src/targets/cpu/include/migraphx/cpu/fuse_ops.hpp
View file @
a6fa5e4b
...
@@ -24,7 +24,7 @@
...
@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#ifndef MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#define MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#define MIGRAPHX_GUARD_CPU_FUSE_OPS_HPP
#include <migraphx/c
onfig
.hpp>
#include <migraphx/c
pu/context
.hpp>
#include <string>
#include <string>
namespace
migraphx
{
namespace
migraphx
{
...
@@ -34,9 +34,7 @@ struct module;
...
@@ -34,9 +34,7 @@ struct module;
namespace
cpu
{
namespace
cpu
{
struct
context
;
struct
MIGRAPHX_CPU_EXPORT
fuse_ops
struct
fuse_ops
{
{
context
*
ctx
=
nullptr
;
context
*
ctx
=
nullptr
;
std
::
string
name
()
const
{
return
"cpu::fuse_ops"
;
}
std
::
string
name
()
const
{
return
"cpu::fuse_ops"
;
}
...
...
src/targets/cpu/include/migraphx/cpu/pointwise.hpp
View file @
a6fa5e4b
...
@@ -24,6 +24,7 @@
...
@@ -24,6 +24,7 @@
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_CPU_POINTWISE_HPP
#include <array>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/context.hpp>
#include <migraphx/context.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/check_shapes.hpp>
...
...
Prev
1
2
3
4
5
6
7
8
…
13
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment